首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
细胞核钙离子是基因转录等细胞核反应过程重要的调控因子.然而,细胞核内钙离子信号的调控机制尚不清楚.缺乏稳定的、敏感的细胞核钙指示剂,是导致其调控机制难以研究的重要原因之一.针对这一问题,设计了能够在细胞核内特异性表达的、具有核定位功能的钙指示剂.以基因编码钙指示剂(GECIs)家族成员GCa MP6为模板,首先融合了对钙离子不敏感的红色荧光蛋白td Tomato来对局部的钙信号进行量化,其次融合了核定位信号(NLS),使GCa MP6能够特异定位于细胞核中.结果表明,NLS-GCa MP6-td Tomato能够在细胞核中有效发挥作用,并且在钙敏感性与动力学上,也与GCa MP6相当.这一新型细胞核钙指示剂将为研究细胞核钙离子的功能及其调控机制提供新的方法与途径.  相似文献   

2.
钙指示剂常被用于细胞及细胞器钙信号的检测,是钙信号转导研究中必不可少的工具.目前的钙指示剂分两大类,包括化学钙指示剂,如Fura-2、Indo-1、Fluo-4等,和基因编码的钙指示蛋白如D1ER、GCaMP、CEPIAler等.随着技术的发展及研究需求的不断提升,各版本的钙指示剂也在不断更新.本文对已有的钙指示剂进行...  相似文献   

3.
核钙信号   总被引:2,自引:0,他引:2  
刘冀珑  卢青  陈大元 《生命科学》2001,13(1):41-44,17
尽管核周隙与内质网的腔相通,核膜上存在钙信号分子的受体等事实表明,细胞核存在一套相对独立的钙信号机制。作为核钙的贮存库,核被是核钙信号的发源地。核被中钙离子的充盈状态影响着核孔复合体的构象,从而调节核质间物质交流。已有证据显示,核钙信号与胞质钙信号在基因转录中的作用有所区别。核钙信号在细胞凋亡中发挥重要作用,其中,钙蛋白酶起着较为关键的作用。核钙信号研究为完整理解钙信号的生理功能开辟了新视野。  相似文献   

4.
细胞核钙信号研究进展   总被引:2,自引:0,他引:2  
钙离子作为细胞内重要的第二信使,在许多生理过程中发挥着关键的作用。最近几年来,随着钙检测技术的不断发展和改进,细胞核钙的研究取得了许多重要的进展。本文从细胞核钙运输、核钙对核与胞质间物质运输的调节,以及核钙在基因表达、有丝分裂和细胞凋亡中的作用等几个方面综述了核钙研究的最新进展。  相似文献   

5.
钙离子(Ca2+)是调节突触前神经递质的胞吐释放的关键离子信号.作为胞内最普遍存在的钙离子感受器的钙调蛋白(CaM)被发现能通过与多种蛋白的相互作用,调控着突触小泡的生发、运输及再填充,从而传递胞内Ca2+浓度变化的信号,对神经递质的释放及突触电生理活动起到至关重要的调控作用.本文综述了CaM及其结合蛋白是如何参与对突触小泡的胞吐释放和胞吞恢复的调控,并探讨了其中可能的分子机制.  相似文献   

6.
细胞核存在独立的钙运输系统   总被引:1,自引:0,他引:1  
Sun Y  Chen YZ 《生理科学进展》1998,29(3):246-248
细胞核具有独立的钙运输系统,可以以依赖于胞质游离钙浓度而对核内钙浓度进行调节。核膜为核钙库,其外核膜上存在钙泵和IP4受体,内核膜上存在的IP3受体和利苦丁(rynodine)受体,核膜经外核膜摄入钙,并在IP3或环化二磷酸腺核糖(cADPR)介导了内核膜向核内释放钙,产生核内钙信号。  相似文献   

7.
钙火花研究进展与瞻望   总被引:3,自引:0,他引:3  
钙离子是最广泛而又最重要的细胞内第二信使。自1993年以来,钙火花等一系列钙信号基本单元相继发现,揭示了细胞钙信号转导的数字-模拟二元特征:纳米-微米尺度上短暂的钙信号事件(数字系统)随机叠加于连续的全细胞钙信号(模拟系统)背景中。数字模式的微区域钙信号赋予细胞钙信号在时间、空间、幅度上多尺度多层次的精细结构。对钙火花激活机制、协同机制、终止机制等方面的研究,为钙释放通道阵列的门控及调节提出了新的见解和问题。钙火花等对于高域值钙依赖性过程(如肌细胞兴奋-收缩耦联、细胞兴奋性和神经细胞分泌)的激活和时空调控具有特别重要的生理和病理意义。钙信号“激-模二元性”的研究可望进一步揭示细胞钙信号的简单性与复杂性的统一。  相似文献   

8.
斑马鱼胚胎第一次卵裂过程中胞内钙信号的研究   总被引:1,自引:0,他引:1  
钙离子作为广泛存在的细胞内信使物质,在动物胚胎早期发育过程中扮演重要角色.为了研究钙离子在斑马鱼胚胎发育过程中的空间分布和浓度变化,采用Fluo-4和Indo-1作为钙离子指示剂,利用激光共聚焦和双波长荧光比例成像技术,对斑马鱼胚胎第一次卵裂过程中的钙信号进行了详细的跟踪观察.在第一次卵裂过程中,斑马鱼胚胎的动物极顶端首先出现高钙斑,然后在分裂沟部位出现高浓度的钙信号,这一信号在卵裂过程中持续存在.利用Indo-1双波长荧光比例成像对上述过程中钙离子的时空分布进行了定量测定,表明,胞内钙离子在卵裂开始之前是均匀分布的,随着分裂沟的出现,其附近区域的钙浓度显著升高,而胞内其他区域的钙浓度则保持不变.双波长荧光比例成像排除了荧光染料分布不均匀造成的干扰,为钙信号与胚胎分裂的密切关系提供了确凿的定量依据.  相似文献   

9.
钙调磷酸酶信号调控真菌生长代谢、毒力及抗逆性能   总被引:1,自引:1,他引:0  
冯莹莹  徐兴然  邹祥 《微生物学报》2021,61(12):3844-3855
钙调磷酸酶是一种丝氨酸/苏氨酸(Ser/Thr)蛋白磷酸酶,在真菌中普遍保守,上游信号途径由Ca2+通道(Cch1)、转运蛋白(Mid1)、钙离子感应蛋白(CaM)、钙调蛋白依赖性磷酸酶等组成。钙调磷酸酶受钙离子和钙调蛋白调节,在调控真菌Ca2+稳态的钙信号级联途径中发挥着中心作用,通过钙信号级联途径参与生物学过程,调控真菌生长、发育和毒力形成来响应外界环境因素的变化,使真菌能够适应不同环境,维持正常的生命活动。本文综述了真菌钙调磷酸酶信号的组成和上下游信号转导途径、调控细胞生长代谢、毒力形成以及抗逆性能调控的研究进展;结合对真菌代谢产物合成的调控作用,对钙调磷酸酶信号作为重要合成生物学元件及调控开关进行了展望。  相似文献   

10.
钙敏感受体是钙新陈代谢的一个重要因素,白介素6是参与破骨细胞分化及功能的一种多效细胞因子。因此,钙敏感受体基因和白介素6基因都为骨矿物质代谢的重要候选基因。本研究旨在利用数量性状传递不平衡检测法,检测白介素6基因和钙敏感受体基因与腰椎和髋部骨密度的关联和连锁,以证实它们是否为影响中国人群骨密度的重要候选基因。本研究的样本为来自中国上海的401个中国核心家庭,共1,263个个体,均为汉族。每个核心家庭由父母双亲和至少一个20~45岁的健康绝经前女儿组成。腰椎与髋部的骨密度采用Hologic QDR 2000+双能X射线扫描仪进行了检测。用PE377测序仪及相关软件分别对白介素6和钙敏感受体基因中的一个CA重复多态微卫星位点进行了基因分型。分析结果表明钙敏感受体基因(CA)12等位基因(P=0.006)及(Ca)18等位基因(P=0.02)与股骨颈骨密度之间存在显著的整体关联。白介素6基因的(CA)18等位基因与整个髋部(P=0.021)、股骨颈(P=0.041)以及转子间区(P=0.029)骨密度之间均存在显著的家庭内关联。白介素6基因(CA)n位点与腰椎BMD之间存在显著的连锁(P=0.001)。本研究结果表明白介素6基因和钙敏感受体基因可能为与中国人群骨密度变异相关联的候选基因。  相似文献   

11.
GCaMP is one of the most widely used calcium indicators in neuronal imaging and calcium cell biology.The newly developed GCaMP6 shows superior brightness and ultrasensitivity to calcium concentration change.In this study,we determined crystal structures of Ca2+-bound GCaMP6 monomer and dimer and presented detailed structural analyses in comparison with its parent version GCaMP5G.Our analyses reveal the structural basis for the outperformance of this newly developed Ca2+indicator.Three substitution mutations and the resulting changes of local structure and interaction explain the ultrasensitivity and increased fluorescence intensity common to all three versions of GCaMP6.Each particular substitution in the three GCaMP6 is also structurally consistent with their differential sensitivity and intensity,maximizing the potential of using GCaMP6 in solving diverse problems in neuronal research and calcium signaling.Our studies shall also be beneficial to further structure-guided optimization of GCaMP and facilitate the design of novel calcium indicators.  相似文献   

12.
Genetically encoded Ca2+ indicators (GECI) are important for the measurement of Ca2+in vivo. GCaMP2, a widelyused GECI, has recently been iteratively improved. Among the improved variants, GCaMP3 exhibits significantly better fluorescent intensity. In this study, we developed a new GECI called GCaMPJ and determined the crystal structures of GCaMP3 and GCaMPJ. GCaMPJ has a 1.5- fold increase in fluorescence and 1.3-fold increase in calcium affinity over GCaMP3. Upon Ca2+ binding, GCaMP3 exhibits both monomeric and dimeric forms. The structural superposition of these two forms reveals the role of Arg-376 in improving monomer performance. However, GCaMPJ seldom forms dimers under conditions similar to GCaMP3. St ructural and mutagenesis studies on Tyr-380 confirmed its importance in blocking the cpEGFP β-barrel holes. Our study proposes an efficient tool for mapping Ca2+ signals in intact organs to facilitate the further improvement of GCaMP sensors.  相似文献   

13.
《Cell calcium》2016,59(6):638-648
Localized subcellular changes in Ca2+ serve as important cellular signaling elements, regulating processes as diverse as neuronal excitability and gene expression. Studies of cellular Ca2+ signaling have been greatly facilitated by the availability of fluorescent Ca2+ indicators. The respective merits of different indicators to monitor bulk changes in cellular Ca2+ levels have been widely evaluated, but a comprehensive comparison for their use in detecting and analyzing local, subcellular Ca2+ signals is lacking. Here, we evaluated several fluorescent Ca2+ indicators in the context of local Ca2+ signals (puffs) evoked by inositol 1,4,5-trisphosphate (IP3) in cultured human neuroblastoma SH-SY5Y cells, using high-speed video-microscopy. Altogether, nine synthetic Ca2+ dyes (Fluo-4, Fluo-8, Fluo-8 high affinity, Fluo-8 low affinity, Oregon Green BAPTA-1, Cal-520, Rhod-4, Asante Calcium Red, and X-Rhod-1) and three genetically-encoded Ca2+-indicators (GCaMP6-slow, -medium and -fast variants) were tested; criteria include the magnitude, kinetics, signal-to-noise ratio and detection efficiency of local Ca2+ puffs. Among these, we conclude that Cal-520 is the optimal indicator for detecting and faithfully tracking local events; that Rhod-4 is the red-emitting indicator of choice; and that none of the GCaMP6 variants are well suited for imaging subcellular Ca2+ signals.  相似文献   

14.
Zhong X  Liu J  Lu F  Wang Y  Zhao Y  Dong S  Leng X  Jia J  Ren H  Xu C  Zhang W 《Cell biology international》2012,36(10):937-943
Nuclear Ca2+ plays a pivotal role in the regulation of gene expression. IP3 (inositol-1,4,5-trisphosphate) is an important regulator of nuclear Ca2+. We hypothesized that the CaR (calcium sensing receptor) stimulates nuclear Ca2+ release through IICR (IP3-induced calcium release) from perinuclear stores. Spontaneous Ca2+ oscillations and the spark frequency of nuclear Ca2+ were measured simultaneously in NRVMs (neonatal rat ventricular myocytes) using confocal imaging. CaR-induced nuclear Ca2+ release through IICR was abolished by inhibition of CaR and IP3Rs (IP3 receptors). However, no effect on the inhibition of RyRs (ryanodine receptors) was detected. The results suggest that CaR specifically modulates nuclear Ca2+ signalling through the IP3R pathway. Interestingly, nuclear Ca2+ was released from perinuclear stores by CaR activator-induced cardiomyocyte hypertrophy through the Ca2+-dependent phosphatase CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) pathway. We have also demonstrated that the activation of the CaR increased the NRVM protein content, enlarged cell size and stimulated CaN expression and NFAT nuclear translocation in NRVMs. Thus, CaR enhances the nuclear Ca2+ transient in NRVMs by increasing fractional Ca2+ release from perinuclear stores, which is involved in cardiac hypertrophy through the CaN/NFAT pathway.  相似文献   

15.
Calcium signal compartmentalization   总被引:3,自引:0,他引:3  
Cytosolic calcium signals are produced by suddenly increasing the concentration of free calcium ions (Ca2+). This can occur by opening channels permeable to Ca2+ either in the surface cell membrane or in the membranes of intracellular organelles containing high Ca2+ concentrations. Ca2+ signals can control several different processes, even in the same cell. In pancreatic acinar cells, for example, Ca2+ signals do not only control the normal secretion of digestive enzymes, but can also activate autodigestion and programmed cell death. Recent technical advances have shown that different patterns of Ca2+ signals can be created, in space and time, which allow specific cellular responses to be elicited. The mechanisms responsible for Ca2+ signal compartmentalization are now largely known and will be described on the basis of recent studies of Ca2+ transport pathways and their regulation in pancreatic acinar cells. It turns out that the Ca2+ handling as well as the structural characteristics of the endoplasmic reticulum (ER) and the mitochondria are of particular importance. Using a variety of Ca(2+)-sensitive fluorescent probes placed in different sub-cellular compartments in combination with local uncaging of caged Ca2+, many new insights into Ca2+ signal generation, compartmentalization and termination have recently been obtained.  相似文献   

16.
Genetically-encoded calcium indicators (GECIs) facilitate imaging activity of genetically defined neuronal populations in vivo. The high intracellular GECI concentrations required for in vivo imaging are usually achieved by viral gene transfer using adeno-associated viruses. Transgenic expression of GECIs promises important advantages, including homogeneous, repeatable, and stable expression without the need for invasive virus injections. Here we present the generation and characterization of transgenic mice expressing the GECIs GCaMP6s or GCaMP6f under the Thy1 promoter. We quantified GCaMP6 expression across brain regions and neurons and compared to other transgenic mice and AAV-mediated expression. We tested three mouse lines for imaging in the visual cortex in vivo and compared their performance to mice injected with AAV expressing GCaMP6. Furthermore, we show that GCaMP6 Thy1 transgenic mice are useful for long-term, high-sensitivity imaging in behaving mice.  相似文献   

17.
Intracellular calcium release is essential for regulating almost all cellular functions. Specific spatio-temporal patterns of cytosolic calcium elevations are critical determinants of cell fate in response to pro-apoptotic cellular stressors. As the apoptotic program can take hours or days, measurement of long-term calcium dynamics are essential for understanding the mechanistic role of calcium in apoptotic cell death. Due to the technical limitations of using calcium-sensitive dyes to measure cytosolic calcium little is known about long-term calcium dynamics in living cells after treatment with apoptosis-inducing drugs. Genetically encoded calcium indicators could potentially overcome some of the limitations of calcium-sensitive dyes. Here, we compared the performance of the genetically encoded calcium indicators GCaMP6s and GCaMP6f with the ratiometric dye Fura-2. GCaMP6s performed as well or better than Fura-2 in detecting agonist-induced calcium transients. We then examined the utility of GCaMP6s for continuously measuring apoptotic calcium release over the course of ten hours after treatment with staurosporine. We found that GCaMP6s was suitable for measuring apoptotic calcium release over long time courses and revealed significant heterogeneity in calcium release dynamics in individual cells challenged with staurosporine. Our results suggest GCaMP6s is an excellent indicator for monitoring long-term changes cytosolic calcium during apoptosis.  相似文献   

18.
The distribution of intracellular free calcium ions ([Ca2+]i) was measured in pollen tubes of Lilium longiflorum using video imaging microscopy and the calcium sensitive indicators fura-2 and quin-2. The mean [Ca2+]i in growing pollen tubes measured with fura-2 shows a maximum of 1.7 to 2.6 microM in the tube tip and decreases almost exponentially to 60 to 100 nM at 100 microns behind the tip. Using quin-2, the maximum [Ca2+]i was also found in the tube tip but with a lower Ca2+ concentration, namely 1 microM. Addition of the calcium channel blocker La3+ caused a decrease of the [Ca2+]i maximum in the tube tip, indicating a heterogeneous distribution of Ca2+ channels along the plasma membrane of pollen tubes. The [Ca2+]i increased after addition of vanadate or compound 48/80. This suggests an involvement of a calmodulin-dependent Ca2+ pump in generation of the Ca2+ gradient in lily pollen tubes. The high [Ca2+]i found in the tube tip with fura-2 seems to indicate the real Ca2+ concentration and is probably responsible for vesicle fusion, fragmentation of actin filaments, and inhibition of cytoplasmic streaming.  相似文献   

19.
Intracellular calcium signaling pathways play a major role in cellular responses such as proliferation, differentiation and apoptosis. Human embryonic stem cells (hESC) provide new possibilities to explore the development and differentiation of various cell types of the human body. Intracellular calcium responses to various ligands and the calcium signaling pathways, however, have not been thoroughly studied in embryonic stem cells and in their differentiated progenies. In our previous work we demonstrated that the use of the fluorescent calcium indicator Fluo-4 with confocal microscopy allows sensitive and reliable measurements of calcium modulation in human embryonic stem cells and stem-cell derived cardiomyocytes. Here we developed a human embryonic stem cell line stably expressing a genetically encoded Ca2 + indicator (GCaMP2) using a transposon-based gene delivery system. We found that the differentiation properties were fully preserved in the GCaMP2-expressing hESC lines and Ca imaging could be performed without the need of toxic dye-loading of the cells. In undifferentiated hES cells the calcium signals induced by various ligands, ATP, LPA, trypsin or angiotensin II were comparable to those in Fluo-4 loaded cells. In accordance with previous findings, no calcium signal was evoked by thrombin, histamine or GABA. Cardiomyocyte colonies differentiated from hES-GCaMP2 cells could be recognized by spontaneous contractions and Ca2 + oscillations. GCaMP2-expressing neural cells were identified based on their morphological and immuno-staining properties and Ca signals were characterized on those cells. Characteristics of both the spontaneous and ligand-induced Ca2 + signals, as well as their pharmacological modification could be successfully examined in these model cells by fluorescence imaging.  相似文献   

20.
Parotid acinar cells exhibit rapid cytosolic calcium signals ([Ca2+]i) that initiate in the apical region but rapidly become global in nature. These characteristic [Ca2+]i signals are important for effective fluid secretion, which critically depends on a synchronized activation of spatially separated ion fluxes. Apically restricted [Ca2+]i signals were never observed in parotid acinar cells. This is in marked contrast to the related pancreatic acinar cells, where the distribution of mitochondria has been suggested to contribute to restricting [Ca2+]i signals to the apical region. Therefore, the aim of this study was to determine the mitochondrial distribution and the role of mitochondrial Ca2+ uptake in shaping the spatial and temporal properties of [Ca2+]i signaling in parotid acinar cells. Confocal imaging of cells stained with MitoTracker dyes (MitoTracker Green FM or MitoTracker CMXRos) and SYTO dyes (SYTO-16 and SYTO-61) revealed that a majority of mitochondria is localized around the nucleus. Carbachol (CCh) and caged inositol 1,4,5-trisphosphate-evoked [Ca2+]i signals were delayed as they propagated through the nucleus. This delay in the CCh-evoked nuclear [Ca2+]i signal was abolished by inhibition of mitochondrial Ca2+ uptake with ruthenium red and Ru360. Likewise, simultaneous measurement of [Ca2+]i with mitochondrial [Ca2+] ([Ca2+]m), using fura-2 and rhod-FF, respectively, revealed that mitochondrial Ca2+ uptake was also inhibited by ruthenium red and Ru360. Finally, at concentrations of agonist that evoke[Ca2+]i oscillations, mitochondrial Ca2+ uptake, and a nuclear [Ca2+] delay, CCh also evoked a substantial increase in NADH autofluorescence. This autofluorescence exhibited a predominant perinuclear localization that was also sensitive to mitochondrial inhibitors. These data provide evidence that perinuclear mitochondria and mitochondrial Ca2+ uptake may differentially shape nuclear [Ca2+] signals but more importantly drive mitochondrial metabolism to generate ATP close to the nucleus. These effects may profoundly affect a variety of nuclear processes in parotid acinar cells while facilitating efficient fluid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号