首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《生理学报》2021,73(5):734-744
生物钟(circadian clock)是机体内在的自主性计时系统,包括视交叉上核(suprachiasmatic nucleus, SCN)中枢生物钟与各组织外周生物钟。分子生物钟的核心机制包括CLOCK/BMAL1二聚体诱导抑制因子CRYs和PERs的转录,CRYs/PERs复合物反馈抑制前者转录活性,进而使这些生物钟核心因子以及节律输出基因的转录水平呈24 h振荡的反馈调节核心环路,以及REV-ERBα和RORα调控BMAL1转录的补充环路。机体大约80%的蛋白编码基因表达呈现明显的昼夜节律性特征,生物钟系统使生物能够适应地球自转所产生的昼夜节律(近日节律),使机体的代谢平衡与能量相互协同。生物钟与代谢稳态相互依存、互为基础,使机体能够高效利用能量,协同机体不同组织,快速适应内外环境变化。肝脏作为机体代谢的中枢器官,其进行的各种生理活动几乎都受到生物钟的控制。生物钟与肝脏代谢调控之间存在多重交互调控机制,两者的交互平衡失调是代谢性疾病的高风险因素。本文主要就肝脏的糖、脂和蛋白质代谢的节律性调控进行了综述,并强调了线粒体功能的振荡,讨论了肝脏代谢对生物钟的反馈调节,并对生物钟研究方法和应用进行展望。  相似文献   

2.
生物钟现象是一种普遍存在于生物界细胞的内源节律性保持机制。生物钟机制的存在可以使生物体的代谢行为产生并维持以24 h为周期的昼夜节律,从而更好地适应于地球自转所产生的环境条件昼夜间节律性变化。蓝藻是目前生物钟分子机制研究中的模式生物,其依赖于k ai基因家族成员的核心生物钟调控模式已经被众多研究者详细阐明。蓝藻生物钟的核心振荡器是由蓝藻k aiA/B/C的编码产物来调控的,Kai蛋白的表达模式具有节律性。KaiC蛋白磷酸化状态的节律性循环及输入、输出途径相关组成蛋白的翻译后修饰状态节律性循环共同组成其反馈回路,负责维持生物钟节律性振荡的持续进行并与环境周期保持同步。传统的蓝藻生物钟分子机制模型认为,节律性表达基因翻译产物的转录/翻译负反馈抑制环是生物节律性维持和输出的关键。遗憾的是,在其它物种生物钟分子机制研究中未发现由kai基因家族成员同源基因组成的节律性标签,这表明以k aiA/B/C为核心振荡器的生物钟系统并不是一种跨物种保守的生物钟系统。近期,人们发现非转录/翻译依赖的振荡器(NTO)也具有成为生物节律性产生和维持的“源动力”的可能。过氧化物氧化还原酶(PRX)氧化还原状态节律性是第一种被报道的跨物种保守的NTO节律性标签,这也日渐成为蓝藻生物钟分子机制研究新的热点。  相似文献   

3.
内源褪黑素对人类和其他哺乳动物的节律行为具有调控功能。生物节律是自然进化赋予生命的基本特征之一,生物体的生命活动受到生物节律的控制与影响。在哺乳动物中,节律调控中心是松果体,其主要功能是合成和分泌褪黑素。褪黑素广泛参与生物体节律行为的调节,本文从褪黑素的产生和作用机制,分别阐述褪黑素对昼夜节律行为和多种年节律行为的调控作用,同时明确褪黑素与生物钟及神经内分泌系统的直接作用和反馈互动的复杂集合,进一步揭示褪黑素调控生物节律的重要作用,以期为褪黑素的基础研究以及未来探究生物体的生物钟内源性发生机制提供参考。  相似文献   

4.
生物钟作为一种重要的调控系统,存在于哺乳动物大部分的细胞、组织和器官中,通过调节生物钟控制基因的节律性表达维持机体以接近24 h为周期的各种行为及生理功能变化。哺乳动物中枢生物钟下丘脑视交叉上核通过神经与体液途径协调同步外周生物钟,肝脏、胰腺、骨骼肌、脂肪组织中参与葡萄糖代谢的众多环节都受到中枢与外周生物钟的调控,如激素信号转导、限速酶基因表达以及营养信号传递等,其中生物钟对肝糖原代谢的调控是生物钟调控葡萄糖稳态的重要环节。基因突变、作息和饮食不规律引起的生物节律紊乱常诱发机体出现胰岛素抵抗、肝糖原含量下降、糖耐量受损等异常表型。该文主要综述了生物钟在肝糖原代谢与葡萄糖稳态调控中的作用,重点阐述了肝脏生物钟调控肝糖原代谢的分子机制,并探讨了轮班工作、时差因素引发的昼夜节律紊乱对人体葡萄糖稳态的影响,以期为糖代谢障碍相关疾病的防治提供新的研究思路。  相似文献   

5.
目的:探讨Sirt1基因在肝癌组织和癌旁组织中表达差异,进一步检测其对肝癌细胞增殖和侵袭活性的调控.方法:收集30例肝癌手术患者的病变组织和癌旁组织,通过Real time-PCR检测Sirt1基因的表达差异,并对其中6例组织通过western blot验证.在转染Sirt1基因或干扰掉该基因后,采用MTT的方法检测HepG2细胞的增殖活性,通过Transwell小室的方法检测HepG2细胞的侵袭活性.结果:Real time-PCR检测发现Sirt1 mRNA在肝癌组织中高表达,同样,Western blot检测也发现Sirt1在肝癌组织中高表达,而在癌旁组织中表达较低.过表达Sirt1导致HepG2细胞过度增殖,侵袭能力增加;相反,敲除该基因,细胞增殖和侵袭活性被抑制.结论:Sirt1在肝癌组织中高表达并且介导肝癌细胞增殖和侵袭活性.该基因在肝癌组织中的过量表达有助于肝癌的临床诊断,同时Sirt1在肝癌的恶性肿瘤生物活性中发挥着重要的作用,因此,Sirt1是一个潜在的治疗肝癌的药物作用靶点,为开发新的抗肿瘤药物提供了新的治疗靶点.  相似文献   

6.
昼夜节律生物钟是以24h为周期的自主维持的振荡器。在高等的多细胞生物中,生物钟可以分为母钟和子钟。研究表明哺乳动物的母钟位于下丘脑视交叉上核(suprachiasmatic nucleus,SCN),由此发出信息控制全身的节律活动;子钟位于组织细胞内,调控效应器的节律。在分子水平上,生物钟的振荡由自身调控反馈环路的转录和翻译组成,并接受外界环境因素的影响,通过下丘脑视叉上核(Suprachiasmatic Nucleus,SCN)中枢震荡器的同步整和而产生作用。视网膜是一种十分节律性的组织,许多生化的、细胞的和生理的过程都是以节律的方式来进行的,如视觉灵敏度、视网膜杆细胞外片层脱落和视网膜色素上皮细胞的吞噬作用、光受体中的视觉色素基因的快速表达等。生物钟存在于很多脊椎动物的视网膜中,被认为是一种外周生物钟。本文综述了视网膜生物钟,生物钟信号传输以及生物钟网络等的最新研究进展。  相似文献   

7.
为探讨转化生长因子-β1及组蛋白去乙酰化酶Sirt1和Sirt2在高血压诱导的血管平滑肌细胞缝隙连接蛋白-43表达及细胞增殖中的作用,研究了腹主动脉窄缩诱导高血压大鼠和正常大鼠胸主动脉转化生长因子-β1、缝隙连接蛋白-43、Sirt1和Sirt2,以及细胞增殖标志蛋白增殖细胞核抗原表达的变化;观察Sirt1和Sirt2在转化生长因子-β1刺激大鼠VSMCs缝隙连接蛋白-43的表达及细胞增殖中的作用。结果显示,高血压大鼠胸主动脉的转化生长因子-β1、缝隙连接蛋白-43、TGF-β1、Sirt1和Sirt2的表达及细胞增殖较正常大鼠均明显升高;转化生长因子-β1促进了大鼠血管平滑肌细胞缝隙连接蛋白-43的表达和增殖,Sirt1与Sirt2的抑制剂Salermide有效抑制了转化生长因子-β1诱导的血管平滑肌细胞缝隙连接蛋白-43的表达与细胞增殖。结果表明,高血压通过上调转化生长因子-β1来诱导VSMCs缝隙连接蛋白-43的表达和细胞增殖,而Sirt1和Sirt2可能在其中起调控作用。  相似文献   

8.
哺乳动物中的昼夜节律系统由位于下丘脑SCN核内的生物钟主钟和位于多数外周细胞中的子钟组成。在分子水平上,生物钟的节律振荡由生物钟基因及其编码蛋白的转录和翻译形成的自主的反馈环路组成,并接受外界因素的影响与环境周期保持同步。为此,就生物钟的调控机制而言,除了转录水平的基因表达调控外,生物钟转录产物和蛋白质的修饰也可以显著影响生物钟基因的表达时相。讨论了一些转录后与翻译后的修饰作用及其对生物钟的影响,并对其今后的研究方向作了展望。  相似文献   

9.
生物体的睡眠/觉醒、进食等行为以及各种生理、生化、代谢过程都遵循着大约24 h的周期性变化,称为昼夜节律(circadian rhythms)。昼夜节律与能量代谢之间存在着紧密的联系。位于下丘脑视交叉上核(suprachiasmatic nuclei,SCN)的中枢生物钟与外周组织细胞中的生物钟共同组成了哺乳动物的昼夜节律系统。以CLOCK/BMAL1异二聚体为核心的转录/翻译负反馈环保障了节律系统的正常运行。各种蛋白质翻译后修饰参与了昼夜节律的调控。综述了氧连β-N-乙酰葡糖胺修饰(O-Glc NAcylation)在调节昼夜节律中发挥的重要作用。O-Glc NAc修饰可以增强一些生物钟蛋白的稳定性及转录活性,也可以影响其他一些生物钟蛋白的磷酸化及细胞定位。抑制生物钟蛋白的O-Glc NAc修饰导致细胞节律衰弱和多种节律基因表达下调。研究表明,O-Glc NAc作为机体能量代谢的感受器参与了多条细胞代谢相关信号转导通路的调节,O-Glc NAc修饰为能量代谢影响昼夜节律提供了一条新的途径。  相似文献   

10.
目的:观察神经细胞氧化损伤时microRNA-199a(miRNA-199a)和Sirt1表达的变化,探讨miRNA-199a对Sirt1的调控作用。方法:不同浓度双氧水(600μmol/L,1 200μmol/L)刺激体外培养的SH-SY5Y细胞12h造成损伤。MTT检测细胞活力,DCFA-DA探针检测细胞内活性氧水平,Hochest染色分析细胞凋亡,RT-PCR检测miRNA-199a的表达,细胞免疫荧光和Western blot检测Sirt1蛋白水平。结果:600μmol/L和1 200μmol/L双氧水刺激SH-SY5Y后细胞活力显著下降,分别降低27.0%和53.6%;ROS荧光强度细胞凋亡显著上升且具有浓度依赖性;miRNA-199a的表达明显上升,分别上升23.0%和51.0%;Sirt1蛋白表达量下降具有浓度依赖性。结论:双氧水刺激SH-SY5Y神经细胞时miRNA-199a表达升高,Sirt1的表达降低。Sirt1水平降低与miRNA-199a通过调控Sirt1表达参与氧化损伤有关[1]。  相似文献   

11.
《Chronobiology international》2013,30(9):1254-1263
The circadian clock regulates many cellular processes, notably including the cell cycle, metabolism and aging. Mitochondria play essential roles in metabolism and are the major sites of reactive oxygen species (ROS) production in the cell. The clock regulates mitochondrial functions by driving daily changes in NAD+ levels and Sirt3 activity. In addition to this central route, in the present study, we find that the expression of some mitochondrial genes is also rhythmic in the liver, and that there rhythms are disrupted by the ClockΔ19 mutation in young mice, suggesting that they are regulated by the core circadian oscillator. Related to this observation, we also find that the regulation of oxidative stress is rhythmic in the liver. Since mitochondria and ROS play important roles in aging, and mitochondrial functions are also disturbed by aging, these related observations prompt the compelling hypothesis that circadian oscillators influence aging by regulating ROS in mitochondria. During aging, the expression rhythms of some mitochondrial genes were altered in the liver and the temporal regulation over the dynamics of mitochondrial oxidative stress was disrupted. However, the expression of clock genes was not affected. Our results suggested that mitochondrial functions are combinatorially regulated by the clock and other age-dependent mechanism(s), and that aging disrupts mitochondrial rhythms through mechanisms downstream of the clock.  相似文献   

12.
The circadian clock network is well known to link food intake and metabolic outputs. Phosphorus is a pivotal nutritional factor involved in energy and skeletal metabolisms and possesses a circadian profile in the circulation; however, the precise mechanisms whereby phosphate metabolism is regulated by the circadian clock network remain largely unknown. Because sympathetic tone, which displays a circadian profile, is activated by food intake, we tested the hypothesis that phosphate metabolism was regulated by the circadian clock network through the modification of food intake-associated sympathetic activation. Skeletal Fgf23 expression showed higher expression during the dark phase (DP) associated with elevated circulating FGF23 levels and enhanced phosphate excretion in the urine. The peaks in skeletal Fgf23 expression and urine epinephrine levels, a marker for sympathetic tone, shifted from DP to the light phase (LP) when mice were fed during LP. Interestingly, β-adrenergic agonist, isoproterenol (ISO), induced skeletal Fgf23 expression when administered at ZT12, but this was not observed in Bmal1-deficient mice. In vitro reporter assays revealed that ISO trans-activated Fgf23 promoter through a cAMP responsive element in osteoblastic UMR-106 cells. The mechanism of circadian regulation of Fgf23 induction by ISO in vivo was partly explained by the suppressive effect of Cryptochrome1 (Cry1) on ISO signaling. These results indicate that the regulation of skeletal Fgf23 expression by sympathetic activity is dependent on the circadian clock system and may shed light on new regulatory networks of FGF23 that could be important for understanding the physiology of phosphate metabolism.  相似文献   

13.
14.

The circadian timing system of mammals is synchronized in concert with a central clock, but is also influenced by additional stimuli, including nutrients. However, little research has been done on polyphenols other than resveratrol and there seem to be no studies on their influence on young and old cells. The purpose of this study was to analyse the potential effects of quercetin, caffeic acid, and resveratrol on young and old fibroblast cells in the expressions of different clock genes and aging-related genes, and further investigate the mechanism. The mRNA expression of different clock genes and aging-related genes was assessed by quantitative real-time PCR. The protein levels of clock genes (BMAL1, PER1 and SIRT1) and glucocorticoid receptor α (GRα) were assessed by ELISA. Quercetin and caffeic acid in old fibroblast cells showed higher clock gene expression than resveratrol, quercetin increased Sirt1 expression, and caffeic acid increased Sirt6 expression indicating the possibility of an anti-aging effect. Also, quercetin and caffeic acid showed higher clock-controlled gene (Sirt1 and NR1D1) expression than resveratrol in young fibroblast cells. It appears that caffeic acid acts on NRF2 expression, and in turn to the actions of GRα, GDF11, Sirt1, and Sirt6. Regarding the increased expression of Per1, the activation effect on NR1D1 was confirmed only for caffeic acid in young fibroblast cells. Our results have confirmed the interplay of the circadian clock genes and cellular aging.

  相似文献   

15.
分化的胚软骨表达蛋白1(differentiated embryo-chondrocyte expressed gene 1,DEC1)作为一种时钟蛋白,除了在周期节律的调控中发挥转录抑制作用外,还在能量代谢以及多种肿瘤相关的信号通路的调控中发挥重要作用。此外,蛋白质的翻译后修饰是实现蛋白质功能精细调控的一种重要方式。目前发现,DEC1主要可被两种翻译后修饰,即泛素化和SUMO化修饰。尽管泛素化和SUMO化是两种过程非常类似的蛋白质翻译后修饰方式,但是它们对目的蛋白功能的调控却截然不同。由于泛素化和SUMO化与底物的作用靶点都是赖氨酸(Lys),因此在多数情况下,泛素化和SUMO化以拮抗性的方式调控底物蛋白的功能。鉴于此,该文旨在阐述泛素化和SUMO化修饰对DEC1功能的拮抗调节过程,为了解时钟蛋白DEC1对多种信号通路的调控过程中的分子机制提供新的思路。  相似文献   

16.
Altered estrogen receptor α (ERA) signaling and altered circadian rhythms are both features of breast cancer. By using a method to entrain circadian oscillations in human cultured cells, we recently reported that the expression of key clock genes oscillates in a circadian fashion in ERA-positive breast epithelial cells but not in breast cancer cells, regardless of their ERA status. Moreover, we reported that ERA mRNA oscillates in a circadian fashion in ERA-positive breast epithelial cells, but not in ERA-positive breast cancer cells. By using ERA-positive HME1 breast epithelial cells, which can be both entrained in vitro and can form mammary gland-like acinar structures in three-dimensional (3D) culture, first we identified a circuit encompassing ERA and an estrogen-regulated loop consisting of two circadian clock genes, PER2 and BMAL1. Further, we demonstrated that this estrogen-regulated circuit is necessary for breast epithelial acinar morphogenesis. Disruption of this circuit due to ERA-knockdown, negatively affects the estrogen-sustained circadian PER2-BMAL1 mechanism as well as the formation of 3D HME1 acini. Conversely, knockdown of either PER2 or BMAL1, by hampering the PER2-BMAL1 loop of the circadian clock, negatively affects ERA circadian oscillations and 3D breast acinar morphogenesis. To our knowledge, this study provides the first evidence of the implication of an ERA-circadian clock mechanism in the breast acinar morphogenetic process.  相似文献   

17.
18.
The phosphorylation of mPer proteins may play important roles in the mechanism of the circadian clock via changes in subcellular localization and degradation. However, the mechanism has remained unclear. Previously, we identified three putative casein kinase (CK)1epsilon phosphorylation motif clusters in mPer1. In this work, we examined the role of the phosphorylation of serine residue, Ser(S)714, in mPer1. mPer1 S[714-726]A mutant, in which potential phosphorylation serine residues replaced by alanine residues, is rapidly phosphorylated compared with wild-type mPer1 by CK1epsilon. Coexpression with S[714]G mutant of mPer1 advanced phase of circadian expression of mPer2-luc expression, which was monitored by in vitro bioluminescence system. This result showed that the mPER1 S[714]G mutation affects circadian core oscillator. Considering these, it seems that Ser 714 might be involved in the regulation of the phosphorylation of other sites in mPer1 by CK1epsilon.  相似文献   

19.
Altered estrogen receptor α (ERA) signaling and altered circadian rhythms are both features of breast cancer. By using a method to entrain circadian oscillations in human cultured cells, we recently reported that the expression of key clock genes oscillates in a circadian fashion in ERA-positive breast epithelial cells but not in breast cancer cells, regardless of their ERA status. Moreover, we reported that ERA mRNA oscillates in a circadian fashion in ERA-positive breast epithelial cells, but not in ERA-positive breast cancer cells. By using ERA-positive HME1 breast epithelial cells, which can be both entrained in vitro and can form mammary gland-like acinar structures in three-dimensional (3D) culture, first we identified a circuit encompassing ERA and an estrogen-regulated loop consisting of two circadian clock genes, PER2 and BMAL1. Further, we demonstrated that this estrogen-regulated circuit is necessary for breast epithelial acinar morphogenesis. Disruption of this circuit due to ERA-knockdown, negatively affects the estrogen-sustained circadian PER2-BMAL1 mechanism as well as the formation of 3D HME1 acini. Conversely, knockdown of either PER2 or BMAL1, by hampering the PER2-BMAL1 loop of the circadian clock, negatively affects ERA circadian oscillations and 3D breast acinar morphogenesis. To our knowledge, this study provides the first evidence of the implication of an ERA-circadian clock mechanism in the breast acinar morphogenetic process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号