首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acid phosphatase associated with rat liver lysosomal membranes (M-APase) was purified about 4,200-fold over the homogenate with 10% recovery to apparent homogeneity, as determined from the pattern on polyacrylamide gel electrophoresis in the presence of SDS. The purification procedure included; preparation of lysosomal membranes, solubilization of the membranes with 1% Triton X-100, immunoaffinity chromatography, and gel filtration with FPLC equipped with a Sephacryl S-300HR column. The molecular weight, estimated by gel filtration through TSK SW 3000G, was approximately 320K and SDS gel electrophoresis showed that the enzyme is composed of four identical subunits with an apparent molecular weight of 67K. The enzyme contains about 24.3% carbohydrate consisting of mannose, galactose, fucose, N-acetylglucosamine, N-acetylgalactosamine, and N-acetylneuraminic acid in a molar ratio of 38:20:5:36:4:11, respectively. In addition, three soluble forms of acid phosphatase (C-APase I, II, and III) in lysosomal contents were separated from rat liver lysosomal contents with DEAE-Sephacel. These three enzymes were also purified using immunoaffinity chromatography followed by gel filtration. C-APase I, II, III, and M-APase have isoelectric points of 7.7-8.2, 6.6-7.0, 5.7-6.7, and 3.4-3.8, respectively. All four APases are sensitive to endo-beta-N-acetylglucosaminidase H. However, only C-APase III and M-APase are digestible with neuraminidase. Susceptibility of M-APase to neuraminidase in intact tritosomes was examined to study the topography of M-APase in tritosomal membranes. Neuraminidase susceptibility of M-APase was not observed in the intact tritosomes until the tritosomes had been disrupted by osmotic shock.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Dipeptidyl peptidase IV (m-DPP IV) in rat liver lysosomal membranes was purified about 50-fold over the lysosomal membranes with 38% recovery to apparent homogeneity, as determined from the pattern on polyacrylamide gel electrophoresis in the presence and in the absence of SDS. The enzyme amounts to about 3% of lysosomal membrane protein constituents. The purification procedures included: extraction of lysosomal membranes by Triton X-100, WGA-Sepharose affinity chromatography, hydroxylapatite chromatography, ion exchange chromatography, and preparative polyacrylamide gel electrophoresis. The enzyme (M(r) 240,000) is composed of two identical subunits with an apparent molecular weight of 110,000. The enzyme contains about 12.4% carbohydrate and the carbohydrate moiety was composed of mannose, galactose, fucose, N-acetylglucosamine, and neuraminic acid in a molar ratio of 14:17:2:24:11. Susceptibility to neuraminidase and immunoreactivity of the enzyme in intact tritosomes were examined to study the topology of the enzyme in tritosomal membranes. Neuraminidase susceptibility and immunoreactivity of the enzyme were not observed in the intact tritosomes until the tritosomes had been disrupted by osmotic shock. This result indicated that both the oligosaccharide chains and the main protein portion of the enzyme are on the inside surface of the tritosomal membranes. Subcellular localization of DPP IV was determined by means of enzyme immunoassay, which indicated that bile canalicular membranes and lysosomal membranes are the major sites of localization, and DPP IV activity in lysosomes was separated into a membrane bound form (60%) and a soluble form (40%). Immunoelectron microscopy clearly confirmed that DPP IV occurs not only in the bile canalicular domain but also in the lysosomes of rat liver.  相似文献   

3.
Glycogen-bound protein phosphatase G from rat liver was transferred from glycogen to beta-cyclodextrin (cycloheptaamylose) linked to Sepharose 6B. After removal of the catalytic subunit and of contaminating proteins with 2 M NaCl, elution with beta-cyclodextrin yielded a single protein on native polyacrylamide gel electrophoresis and two polypeptides (161 and 54 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several lines of evidence indicate that the latter polypeptides are subunits of the protein phosphatase G holoenzyme. First, these polypeptides were also present, together with the catalytic subunit, in the extensively purified holoenzyme. Also, polyclonal antibodies against these polypeptides were able to bind the holoenzyme. Further, while bound to cyclodextrin-Sepharose, the polypeptides were able to recombine with separately purified type-1 (AMD) catalytic subunit, but not with type-2A (PCS) catalytic subunit. The characteristics of the reconstituted enzyme resembled those of the nonpurified protein phosphatase G. At low dilutions, the spontaneous phosphorylase phosphatase activity of the reconstituted enzyme was about 10 times lower than that of the catalytic subunit, but it was about 1000-fold more resistant to inhibition by the modulator protein (inhibitor-2). In contrast with the free catalytic subunit, the reconstituted enzyme co-sedimented with glycogen, and it was able to activate purified liver glycogen synthase b. Also, the synthase phosphatase activity was synergistically increased by a cytosolic phosphatase and inhibited by physiological concentrations of phosphorylase alpha and of Ca2+.  相似文献   

4.
5.
Alkaline phosphatase has been purified from cultured rat liver cells by butanol extraction, column chromatography on DEAE-cellulose and on Sephadex G-200, and preparative polyacrylamide gel electrophoresis. By electrophoresis on polyacrylamide, the purified enzyme was resolved into two active forms. Both forms have similar molecular weights of around 200,000. The subunit size was found to be 50,000 by SDS-polyacrylamide gel electrophoresis. These results suggest that alkaline phosphatase purified from cultured rat liver cells has a tetrameric structure. The optimum pH was found to be approximately 10.4, using p-nitrophenylphosphate as a substrate in a carbonate buffer system. The apparent Km was estimated to be 2.4 mM, using p-nitrophenylphosphate in carbonate buffer, pH 10.4.  相似文献   

6.
An acid phosphatase species which is activated by Fe2+ was purified 3,700-fold from rat spleen by chromatography on columns containing Blue-Sepharose, concanavalin A-Sepharose, Sephadex G-100, and CM-Sephadex. The enzyme hydrolyzed aryl phosphates, nucleoside di- and triphosphates, phosphoproteins, and thiamine pyrophosphate with Km values of 10(-4) to 10(-3) M at an optimal pH of 5.0-5.8. Co-purification of the acid phosphatase and acid phosphoprotein phosphatase indicated that they were identical. The purified enzyme was glycoprotein in nature, showing four heterogeneous forms on acid polyacrylamide gel electrophoresis (pI values, 7.8, 8.0, 8.3, and 8.5), but it gave a molecular weight of 33,000 on sodium dodecyl sulfate-gel electrophoresis and gel permeation chromatography. The enzyme had a purple color (lambda max 545 nm) and contained 2 iron atoms per enzyme molecule. Among reductants, ascorbic acid and Fe2+ were the best activators, although their combined effect was not additive. Fe2+ and ascorbic acid both changed the purple enzyme into the same active form (lambda max 515 nm), giving almost the same kinetic constants for substrates and for inhibitors such as molybdate, phosphate and fluoride. However, low concentrations of Fe2+, from 0.01 mM to 1.0 mM, immediately and reversibly activated the enzyme, whereas high concentrations of ascorbic acid over 1 mM were required for maximal activation, which was slow and irreversible.  相似文献   

7.
Tartrate-resistant acid phosphatase active on nucleoside di- and triphosphate substrates was isolated from developing rat bone and purified 2500-fold. The enzyme concentration had a purple coloration and activity that was sensitive to reducing agents. Mild reducing agents such as ferrous ion and ascorbic acid caused loss of purple color and increased activity toward substrates severalfold; however, a strong reductant such as dithionite caused loss of both color and activity which were partially restored by addition of ferrous ion and ascorbic acid. Enzyme activity was homogeneous with protein during the final gel permeation steps of chromatography and gave an apparent molecular size of about 40,000 Da. Determination of iron in the most pure preparation revealed the presence of 1.3 atoms of iron per molecule of the tartrate-resistant enzyme E2. Other properties of the purified enzyme include a pI of approximately 9.5 and sensitivity to inhibition by ions of copper, zinc, fluoride, and molybdate. Antibody prepared to the pre-concanavalin A (Con A)-Sepharose purified enzyme reacted with all protein from the Con A step, but it did not react with tartrate-sensitive acid phosphatase from rat bone or with potato acid phosphatase. Purple acid phosphatase from rat bone has many properties that parallel the iron-containing purple acid phosphatases from rat spleen, bovine spleen, and pig uterine secretions.  相似文献   

8.
Lysosomal α-glucosidase (EC 3.2.1.20) was purified from a lysosome-enriched fraction of rat liver using an improved procedure. A purification factor of 2900-fold was reached, with a yield of 35%. Polyacrylamide gel electrophoresis of the purified enzyme in nondenaturing conditions, or in the presence of SDS, showed only one band. However, a microheterogeneity among enzyme subunits was detected by high-resolution two-dimensional electrophoresis.  相似文献   

9.
Sialoglycoprotein with a molecular mass of 85 kDa (LGP85) was purified from rat liver lysosomal membranes with a 0.9% recovery to apparent homogeneity, as determined from the pattern on polyacrylamide gel electrophoresis in the presence and in the absence of SDS. The purification procedures included: preparation of lysosomal membranes, elimination of LGP107 and LGP96 with immunoaffinity columns, WGA-Sepharose affinity chromatography, hydroxylapatite chromatography, and preparative polyacrylamide gel electrophoresis. LGP85 contains about 22.8% carbohydrate and the carbohydrate moiety is composed of mannose, galactose, fucose, glucosamine, galactosamine, and neuraminic acid, in a molar ratio of 40:20:2:23:3:13. Susceptibility to neuraminidase and immunoreactivity of the protein in intact tritosomes were examined to study the topology of the protein in tritosomal membranes. Neuraminidase susceptibility and immunoreactivity of the protein were not observed in intact tritosomes until the tritosomes had been disrupted by osmotic shock. These observations suggest that both oligosaccharide chains and the main protein portion of the protein are located on the interior surface of the tritosomal membranes. Subcellular localization of LGP85 was determined using enzyme immunoassay. The lysosomes seem to be the major location. LGP85 in the lysosomes was divided into the membrane bound form (90%) and the soluble form (10%). Immunoelectron microscopy clearly confirmed that the localization of LGP85 is mainly confined to lysosomes.  相似文献   

10.
Purification and properties of rat liver lysosomal lipase   总被引:5,自引:0,他引:5  
  相似文献   

11.
12.
InDrosophila, unlike humans, the lysosomal acid phosphatase (Acph-1) is a non-essential enzyme. It is also one of the most rapidly evolving gene-enzyme systems in the genus. In order to determine which parts of the enzyme are conserved and which parts are apparently under little functional constraint, we cloned the gene fromDrosophila melanogaster via a chromosomal walk. Fragments from the gene were used to recover an apparently full-length cDNA. The cDNA was subcloned into aDrosophila transformation vector where it was under the control of the 5′ promoter sequence of thehsp-70 gene. Three independent transformants were obtained; in each, Acph-1 expression from the cDNA was constitutive and not dependent on heat shock, as determined by densitometric analyses of the allozymic forms of the enzyme. The pattern of expression indicates thehsp-70 and endogenousAcph-1 promoters act together in some, but not all, tissues. The sequence of the cDNA was determined using deletions made with exonuclease III, and primers deduced from the cDNA sequence were used to sequence the genomic clone. Five introns were found, and putative 5′ up-stream regulatory sequences were identified. Amino acid sequence comparisons have revealed several highly conserved motifs betweenDrosophila Acph-1 and vertebrate lysosomal and prostatic acid phosphatases.  相似文献   

13.
Purification and characterization of banana fruit acid phosphatase   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Although lysosomal enzyme activities are known to vary in response to numerous physiological and pharmacological stimuli, the relationship between lysosomal enzyme activity and enzyme concentration has not been systematically studied. Therefore we developed radioimmunoassays for two lysosomal glycosidases in order to determine lysosomal enzyme concentration. beta-Galactosidase and beta-glucuronidase were purified from rat liver 2780-fold and 1280-fold respectively, by using differential centrifugation, affinity chromatography, ion-exchange chromatography and molecular-sieve chromatography. Polyclonal antibodies to these enzymes were raised in rabbits, and two radioimmunoassays were established. Antibody specificity was shown by: (i) selective immunoprecipitation of enzyme activity; (ii) identical bands of purified enzyme on SDS/polyacrylamide-gel electrophoresis and immunoelectrophoresis; (iii) single immunoreactive peaks in molecular-sieve chromatography experiments. Sensitivities of the assays were such that 15 ng of beta-galactosidase and 45 ng of beta-glucuronidase decreased the ratio of bound to free radiolabel by 50%; minimal detectable amounts of immunoreactive enzymes were 2 ng and 10 ng respectively. The assays were initially used to assess the effects of physiological perturbations (i.e. fasting and age) on enzyme concentrations in rat liver; these experiments showed that changes in enzyme concentrations do not always correlate with changes in enzyme activities. This represents the first report of radioimmunoassays for lysosomal glycosidases. The results suggest that these radioimmunoassays provide useful technology for the study of regulatory control mechanisms of the concentrations of lysosomal glycosidases in mammalian tissues.  相似文献   

16.
Human prostatic acid phosphatase (orthophosphoric monoester phosphohydrase, EC 3.1.3.2) is purified to homogeneity by standard procedures which include CM-Sephadex, Con A affinity chromatography and gel filtration. The purified enzyme is antigenically specific and has a M.W. of 100,000 with subunit M.W. of 48,000. However, the enzyme exhibited charge heterogeneity. Two major electrophoretic or chromatographic isozymic forms of PAP were separated by DEAE-Sephadex chromatography and their immunochemical identity was studied by immunodiffusion before and after the neuraminidase digestion. Quantitative precipitin and inhibition experiments showed immunological identity of the two chromatographic isozymes. Immunologic specificity of this enzyme resides on the protein moiety rather than the carbohydrate residue, although the latter group is mostly responsible for the charge group heterogeneity of the enzyme.  相似文献   

17.
《Phytochemistry》1986,25(2):351-357
Acid phosphatase (EC 3.1.3.2) from sunflower seed was purified 1800-fold to homogeneity using both conventional and affinity chromatographic methods. The purified enzyme was a mixture of two enzyme forms distinguishable by polyacrylamide gel electrophoresis (PAGE). Gel exclusion chromatography, which did not distinguish between the two forms, gave an apparent M, of 103 000. Preparative PAGE permitted the separation of the two forms, and SDS-PAGE showed that they contained equivalent peptide subunits of apparent M, 56 000 and 52 000. Amino acid analysis indicated that both enzyme forms have similar amino acid compositions. Data on substrate specificity and pH dependence is presented. The kinetic constants for hydrolysis of p-nitrophenyl phosphate as catalysed by sunflower seed acid phosphatase were independent of pH in the range 3-5. The enzyme was competitively inhibited by inorganic phosphate and non-competitively inhibited by phosphomycin.  相似文献   

18.
A 81-fold purification of human seminal plasma acid phosphatase was obtained by a three-step procedure, involving ammonium sulfate precipitation, DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Homogeneity of the preparation during purification steps was tested by polyacrylamide gel electrophoresis and only one major band was obtained after the final step. The pH optimum for the activity of the purified enzyme was 5.6 and thermal stability was obtained even up to 40 degrees C. PNPP was the most specific synthetic substrate. The Km of purified seminal acid phosphatase towards PNPP was 1.5 X 10(-3) M. Among the metal ions tested, Hg+2 showed an I50 value of 4.2 X 10(-7) M. Studies with PCMB, PMSF and EDTA did not show any inhibition, whereas NaF and L(+)tartrate, at 1 mM concentration, inhibited the enzyme by 95% and 85%, respectively.  相似文献   

19.
Rat liver beta-glucuronidase (EC 3.2.1.31), both from microsomal and lysosomal fractions, were purified about 9500-fold over the homogenate with high yield using affinity chromatography prepared by coupling purified specific immunoglobulin G against rat preputial gland beta-glucuronidase to Sepharose 2B and isoelectric focusing. The purified enzymes appeared homogeneous on electrophoresis in polyacrylamide gel and had a molecular weight of approximately 310000. In dodecylsulfate polyacrylamide gel electrophoresis, the microsomal beta-glucuronidase showed a single band corresponding to a molecular weight of 79000, while the lysosomal beta-glucuronidase had three distinct bands which consisted of one major and two minor bands corresponding to molecular weight of 79000, 74000, and 70000, respectively. A broad pH activity curve with a single optimum at pH 4.4 was observed in both the microsomal and the lysosomal beta-glucuronidases. Immunological gel diffusion technique with rabbit antiserum against rat liver lysosomal beta-glucuronidase revealed that both enzymes had the same or quite similar antigenic determinants.  相似文献   

20.
1. Transglutaminase (EC 2.3.2.13) was purified from rat liver. 2. The enzyme was stable at 25 degrees C in the pH range of 6.0-9.0, with the optimum at pH 9.0. 3. The enzyme was inactivated after incubation for 20, 4 and 1 min at 44 degrees C, 52 degrees C, and 60 degrees C, respectively. 4. Activation energies were 30.4 kcal/mol for denaturation and 19.9 kcal/mol for substrate conversion to products. 5. The enzyme was inactivated by sulfhydryl modification with hydroxymercuribenzoate (99.1%) and N-ethylmalemide (78.5%). 6. Calcium, required for the activity, was replaced to a lesser extent, by Mg2+, Sr2+, Zn2+ and Mn2+ (31.8, 27.0, 24.6 and 3.5%). 7. Steady-state kinetics showed: Vmax = 10 microM-min-1, Km = 0.05 mM (N-dimethylated casein), kcat = 31.9 min-1 kcat/Km = 560 min-1 mM-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号