首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vertebrates, the sensory neurons of the epibranchial (EB) ganglia transmit somatosensory signals from the periphery to the CNS. These ganglia are formed during embryogenesis by the convergence and condensation of two distinct populations of precursors: placode-derived neuroblasts and neural crest- (NC) derived glial precursors. In addition to the gliogenic crest, chondrogenic NC migrates into the pharyngeal arches, which lie in close proximity to the EB placodes and ganglia. Here, we examine the respective roles of these two distinct NC-derived populations during development of the EB ganglia using zebrafish morphant and mutants that lack one or both of these NC populations. Our analyses of mutant and morphant zebrafish that exhibit deficiencies in chondrogenic NC at early stages reveal a distinct requirement for this NC subpopulation during early EB ganglion assembly and segmentation. Furthermore, restoration of wildtype chondrogenic NC in one of these mutants, prdm1a, is sufficient to restore ganglion formation, indicating a specific requirement of the chondrogenic NC for EB ganglia assembly. By contrast, analysis of the sox10 mutant, which lacks gliogenic NC, reveals that the initial assembly of ganglia is not affected. However, during later stages of development, EB ganglia are dispersed in the sox10 mutant, suggesting that glia are required to maintain normal EB ganglion morphology. These results highlight novel roles for two subpopulations of NC cells in the formation and maintenance of EB ganglia: chondrogenic NC promotes the early-stage formation of the developing EB ganglia while glial NC is required for the late-stage maintenance of ganglion morphology.  相似文献   

2.
In all vertebrates, the neurogenic placodes are transient ectodermal thickenings that give rise to sensory neurons of the cranial ganglia. Epibranchial (EB) placodes generate neurons of the distal facial, glossopharyngeal and vagal ganglia, which convey sensation from the viscera, including pharyngeal endoderm structures, to the CNS. Recent studies have implicated signals from pharyngeal endoderm in the initiation of neurogenesis from EB placodes; however, the signals underlying the formation of placodes are unknown. Here, we show that zebrafish embryos mutant for fgf3 and fgf8 do not express early EB placode markers, including foxi1 and pax2a. Mosaic analysis demonstrates that placodal cells must directly receive Fgf signals during a specific crucial period of development. Transplantation experiments and mutant analysis reveal that cephalic mesoderm is the source of Fgf signals. Finally, both Fgf3 and Fgf8 are sufficient to induce foxi1-positive placodal precursors in wild-type as well as Fgf3-plus Fgf8-depleted embryos. We propose a model in which mesoderm-derived Fgf3 and Fgf8 signals establish both the EB placodes and the development of the pharyngeal endoderm, the subsequent interaction of which promotes neurogenesis. The coordinated interplay between craniofacial tissues would thus assure proper spatial and temporal interactions in the shaping of the vertebrate head.  相似文献   

3.
Cranial neurogenic placodes and the neural crest make essential contributions to key adult characteristics of all vertebrates, including the paired peripheral sense organs and craniofacial skeleton. Neurogenic placode development has been extensively characterized in representative jawed vertebrates (gnathostomes) but not in jawless fishes (agnathans). Here, we use in vivo lineage tracing with DiI, together with neuronal differentiation markers, to establish the first detailed fate-map for placode-derived sensory neurons in a jawless fish, the sea lamprey Petromyzon marinus, and to confirm that neural crest cells in the lamprey contribute to the cranial sensory ganglia. We also show that a pan-Pax3/7 antibody labels ophthalmic trigeminal (opV, profundal) placode-derived but not maxillomandibular trigeminal (mmV) placode-derived neurons, mirroring the expression of gnathostome Pax3 and suggesting that Pax3 (and its single Pax3/7 lamprey ortholog) is a pan-vertebrate marker for opV placode-derived neurons. Unexpectedly, however, our data reveal that mmV neuron precursors are located in two separate domains at neurula stages, with opV neuron precursors sandwiched between them. The different branches of the mmV nerve are not comparable between lampreys and gnatho-stomes, and spatial segregation of mmV neuron precursor territories may be a derived feature of lampreys. Nevertheless, maxillary and mandibular neurons are spatially segregated within gnathostome mmV ganglia, suggesting that a more detailed investigation of gnathostome mmV placode development would be worthwhile. Overall, however, our results highlight the conservation of cranial peripheral sensory nervous system development across vertebrates, yielding insight into ancestral vertebrate traits.  相似文献   

4.
5.
6.
7.
The cutaneous sensory neurons of the ophthalmic lobe of the trigeminal ganglion are derived from two embryonic cell populations, the neural crest and the paired ophthalmic trigeminal (opV) placodes. Pax3 is the earliest known marker of opV placode ectoderm in the chick. Pax3 is also expressed transiently by neural crest cells as they emigrate from the neural tube, and it is reexpressed in neural crest cells as they condense to form dorsal root ganglia and certain cranial ganglia, including the trigeminal ganglion. Here, we examined whether Pax3+ opV placode-derived cells behave like Pax3+ neural crest cells when they are grafted into the trunk. Pax3+ quail opV ectoderm cells associate with host neural crest migratory streams and form Pax3+ neurons that populate the dorsal root and sympathetic ganglia and several ectopic sites, including the ventral root. Pax3 expression is subsequently downregulated, and at E8, all opV ectoderm-derived neurons in all locations are large in diameter, and virtually all express TrkB. At least some of these neurons project to the lateral region of the dorsal horn, and peripheral quail neurites are seen in the dermis, suggesting that they are cutaneous sensory neurons. Hence, although they are able to incorporate into neural crest-derived ganglia in the trunk, Pax3+ opV ectoderm cells are committed to forming cutaneous sensory neurons, their normal fate in the trigeminal ganglion. In contrast, Pax3 is not expressed in neural crest-derived neurons in the dorsal root and trigeminal ganglia at any stage, suggesting either that Pax3 is expressed in glial cells or that it is completely downregulated before neuronal differentiation. Since Pax3 is maintained in opV placode-derived neurons for some considerable time after neuronal differentiation, these data suggest that Pax3 may play different roles in opV placode cells and neural crest cells.  相似文献   

8.
The neural crest (NC) lineage gives rise to a wide array of cell types ranging from neurons and glia of the peripheral nervous system to skeletal elements of the head. The mechanisms regulating NC differentiation into such a large number of cell types remain largely unknown. MicroRNAs (miRNAs) play key roles in regulating developmental events suggesting they may also play a role during NC differentiation. To determine what roles miRNAs play in differentiation of NC-derived tissues, we deleted the miRNA processing gene Dicer in NC cells using the Wnt1-Cre deleter line. We show that deletion of Dicer soon after NC cells have formed does not affect their migration and colonization of their targets in the embryo. However, the post-migratory NC is dependent on Dicer for survival. In the head, loss of Dicer leads to a loss of NC-derived craniofacial bones while in the trunk, cells of the enteric, sensory and sympathetic nervous systems are lost during development. We found that loss of Dicer does not prevent the initial differentiation of NC but as development progresses, NC derivatives are lost due to apoptotic cell death. When Dicer is deleted, both Caspase-dependent and -independent apoptotic pathways are activated in the sensory ganglia but only the Caspase-dependent apoptotic program was activated in the sympathetic nervous system showing that the specific endogenous apoptotic programs are turned on by loss of Dicer. Our results show that Dicer and miRNAs, are required for survival of NC-derived tissues by preventing apoptosis during differentiation.  相似文献   

9.
10.
Enteric neurons, unlike sympathetic and sensory neurons that require target-derived neurotrophins for survival, do not undergo classical caspase-3-mediated programmed cell death (PCD) during normal development. Whether parasympathetic neurons in the pancreas, which originate from a subpopulation of enteric nervous system (ENS) precursors, or other parasympathetic neurons undergo PCD during normal mammalian development is unknown. In GFRalpha2-deficient mice, many submandibular and intrapancreatic parasympathetic neurons are missing but whether this is due to increased neuronal death is unclear. Here we show that activated caspase-3 and PGP9.5 doubly positive neurons are present in wild-type mouse pancreas between embryonic day E15 and birth. Thus, in contrast to ENS neurons, intrapancreatic neurons undergo PCD via apoptosis during normal development. We also show that, in GFRalpha2-deficient mice, most intrapancreatic neurons are lost during this late fetal period, which coincides with a period of increased apoptosis of the neurons. Since the percentage of BrdU and Phox2b doubly positive cells in the fetal pancreas and the number of intrapancreatic neurons at E15 were similar between the genotypes, impaired precursor proliferation and migration are unlikely to contribute to the loss of intrapancreatic neurons in GFRalpha2-KO mice. Caspase-3-positive neurons were also found in GFRalpha2-deficient submandibular ganglia around birth, suggesting that parasympathetic neurons depend on limited supply of (presumably target-derived neurturin) signaling via GFRalpha2 for survival.  相似文献   

11.
Summary The distribution of basic fibroblast growth factor (bFGF)-immunoreactivity (IR) was studied in rat sensory and autonomic ganglia. In postnatal and adult sympathetic superior cervical ganglia and in adult parasympathetic otic ganglia no bFGF-staining was found. Postnatal and adult neural crest-and placode-derived sensory ganglia displayed intensive bFGF-IR in a neuronal subpopulation. This subpopulation was characterized by use of consecutive sections of adult dorsal root ganglia stained with antibodies against substance P, somatostatin, bombesin, and bFGF. Basic FGF was colocalized with the somatostatin/bombesin subpopulation but not with substance P.  相似文献   

12.
sox10 is necessary for development of neural and pigment cell derivatives of the neural crest (NC). However, whereas a direct role for Sox10 activity has been established in pigment and glial lineages, this is more controversial in NC-derived sensory neurons of the dorsal root ganglia (DRGs). We proposed that sox10 functioned in specification of sensory neurons, whereas others suggested that sensory neuronal defects were merely secondary to absence of glia. Here we provide evidence that in zebrafish, early DRG sensory neuron survival is independent of differentiated glia. Critically, we demonstrate that Sox10 is expressed transiently in the sensory neuron lineage, and specifies sensory neuron precursors by regulating the proneural gene neurogenin1. Consistent with this, we have isolated a novel sox10 mutant that lacks glia and yet displays a neurogenic DRG phenotype. In conjunction with previous findings, these data establish the generality of our model of Sox10 function in NC fate specification.  相似文献   

13.
14.
15.
Nitric oxide (NO) is synthesized in neurons and is a potent relaxor of vascular and nonvascular smooth muscle. The uterus contains abundant NO-synthesizing nerves which could be autonomic and/or sensory. This study was undertaken to determine: 1) the source(s) of NO-synthesizing nerves in the rat uterus and 2) what other neuropeptides or transmitter markers might coexist with NO in these nerves. Retrograde axonal tracing, utilizing Fluorogold injected into the uterine cervix, was employed for identifying sources of uterine-projecting neurons. NO-synthesizing nerves were visualized by staining for nicotinamide adenine dinucleotide phosphate (reduced)-diaphorase (NADPH-d) and immunostaining with an antibody against neuronal/type I NO synthase (NOS). NADPH-d-positive perikarya and terminal fibers were NOS-immunoreactive (-I). Some NOS-I/NADPH-d-positive nerves in the uterus are parasympathetic and originate from neurons in the pelvic paracervical ganglia (PG) and some are sensory and originate from neurons in thoracic, lumbar, and sacral dorsal root ganglia. No evidence for NOS-I/NADPH-d-positive sympathetic nerves in the uterus was obtained. Furthermore, double immunostaining revealed that in parasympathetic neurons, NO-I/NADPH-d-reactivity coexists with vasoactive intestinal polypeptide, neuropeptide Y, and acetylcholinesterase and in sensory nerves, NOS-I/NADPH-d-reactivity coexists with calcitonin generelated peptide and substance P. In addition, tyrosine hydroxylase(TH)-I neurons of the PG do not contain NOS-I/NADPH-d-reactivity, but some TH-I neurons are apposed by NOS-I varicosities. These results suggest NO-synthesizing nerves in the uterus are autonomic and sensory, and could play significant roles, possibly in conjunction with other putative transmitter agents, in the control of uterine myometrium and vasculature.  相似文献   

16.
The neurotrophic factors that influence the development and function of the parasympathetic branch of the autonomic nervous system are obscure. Recently, neurturin has been found to provide trophic support to neurons of the cranial parasympathetic ganglion. Here we show that GDNF signaling via the RET/GFR(alpha)1 complex is crucial for the development of cranial parasympathetic ganglia including the submandibular, sphenopalatine and otic ganglia. GDNF is required early for proliferation and/or migration of the neuronal precursors for the sphenopalatine and otic ganglia. Neurturin exerts its effect later and is required for further development and maintenance of these neurons. This switch in ligand dependency during development is at least partly governed by the altered expression of GFR(&agr;) receptors, as evidenced by the predominant expression of GFR(&agr;)2 in these neurons after ganglion formation.  相似文献   

17.
By grafting ganglia from embryonic quails into the neural crest migration pathway of 2-day chick embryos, it was previously demonstrated that all type of ganglia possess more developmental potentialities than those normally expressed in the normal course of development. Namely autonomic neurones with catecholamine and adrenomedullary cells can be obtained from grafted spinal ganglia. The latter also yield sensory neurons to the host dorsal root ganglia (DRG) but only if they are taken from the donor before 8 days of incubation. In the present article we show that the capacity to differentiate sensory neurons in back-transplantation experiments can be correlated with the presence in the donor DRG of cycling neuronal precursors. Once all the neurons have been withdrawn from the cell cycle - an event which occurs first in the mediodorsal and then in the lateroventral area of the ganglion - the DRG cell population gives rise exclusively to autonomic ganglion cells in the host. It is concluded that in the conditions of the back-transplantation experiments, the postmitotic neurons contained in the donor ganglion do not survive. Therefore, the neurons and paraganglion cells which differentiate in the host arise from still undifferentiated precursor cells. This indicates that besides sensory neuron precursors the embryonic DRG cell population also contains precursor cells for the autonomic differentiation pathway.  相似文献   

18.
Interactions between Nodal/Activin and Fibroblast growth factor (Fgf) signalling pathways have long been thought to play an important role in mesoderm formation. However, the molecular and cellular processes underlying these interactions have remained elusive. Here, we address the epistatic relationships between Nodal and Fgf pathways during early embryogenesis in zebrafish. First, we find that Fgf signalling is required downstream of Nodal signals for inducing the Nodal co-factor One-eyed-pinhead (Oep). Thus, Fgf is likely to be involved in the amplification and propagation of Nodal signalling during early embryonic stages. This could account for the previously described ability of Fgf to render cells competent to respond to Nodal/Activin signals. In addition, overexpression data shows that Fgf8 and Fgf3 can take part in this process. Second, combining zygotic mutations in ace/fgf8 and oep disrupts mesoderm formation, a phenotype that is not produced by either mutation alone and is consistent with our model of an interdependence of Fgf8 and Nodal pathways through the genetic regulation of the Nodal co-factor Oep and the cell propagation of Nodal signalling. Moreover, mesodermal cell populations are affected differentially by double loss-of-function of Zoep;ace. Most of the dorsal mesoderm undergoes massive cell death by the end of gastrulation, in contrast to either single-mutant phenotype. However, some mesoderm cells are still able to undergo myogenic differentiation in the anterior trunk of Zoep;ace embryos, revealing a morphological transition at the level of somites 6-8. Further decreasing Oep levels by removing maternal oep products aggravates the mesodermal defects in double mutants by disrupting the fate of the entire mesoderm. Together, these results demonstrate synergy between oep and fgf8 that operates with regional differences and is involved in the induction, maintenance, movement and survival of mesodermal cell populations.  相似文献   

19.
20.
The study of mammalian neural crest development has been limited by the lack of an accessible system for in vivo transplantation of these cells. We have developed a novel transplantation system to study lineage restriction in the rodent neural crest. Migratory rat neural crest cells (NCCs), transplanted into chicken embryos, can differentiate into sensory, sympathetic, and parasympathetic neurons, as shown by the expression of neuronal subtype-specific and pan-neuronal markers, as well as into Schwann cells and satellite glia. In contrast, an immunopurified population of enteric neural precursors (ENPs) from the fetal gut can also generate neurons in all of these ganglia, but only expresses appropriate neuronal subtype markers in Remak's and associated pelvic parasympathetic ganglia. ENPs also appear restricted in the kinds of glia they can generate in comparison to NCCs. Thus ENPs have parasympathetic and presumably enteric capacities, but not sympathetic or sensory capacities. These results identify a new autonomic lineage restriction in the neural crest, and suggest that this restriction preceeds the choice between neuronal and glial fates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号