首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
THE cell walls of Gram-positive bacteria consist principally of a water-insoluble polymer and peptidoglycan (synonyms, murein, mucopeptide, glycosaminopeptide), which in some cases accounts for as much as 90% of the cell wall. After other components (teichoic acid, teichuronic acid, polysaccharide or protein) have been gently removed from the cell walls, peptidoglycan remains as a cell-shaped structure at least 100 Å thick. We report here results of X-ray diffraction observations on whole cell walls and peptidoglycans of Staphylococcus aureus, Bacillus licheniformis and Micrococcus lysodeikticus. Chemical data shows that all the muramic acid residues in the glycan chains of the peptidoglycan of S. aureus are substituted with the peptide L Ala-D GluNH2-L Lys-D Ala and that there is extensive cross linking by pentaglycine bridges between peptides on adjacent glycan chains1,3. Such a peptidoglycan might be expected to have an ordered crystalline structure. On the contrary, peptidoglycans of the bacilli, in which the cross linking between peptides is direct and considerably less4,5 might be expected to have a less ordered structure. The mode of packing of the glycan and peptide moieties has been considered by Kelemen and Rogers6. When the glycan chains are stacked in pairs, as in the analogous polysaccharide chitin7, the muramic acid residues are orientated in such a way as to allow a three-dimensional structure to be built. If the bulk of the peptides are then arranged in a pseudo β configuration, calculations show that the expected dimensions of the cell wall calculated from the model are of the right order and also such a model allows for the existence of extensive stabilizing hydrogen bonds between adjacent peptide chains.  相似文献   

2.
Autolysin-defective pneumococci continue to synthesize both peptidoglycan and teichoic acid polymers (Fischer and Tomasz, J. Bacteriol. 157:507-513, 1984). Most of these peptidoglycan polymers are released into the surrounding medium, and a smaller portion becomes attached to the preexisting cell wall. We report here studies on the degree of cross-linking, teichoic acid substitution, and chemical composition of these peptidoglycan polymers and compare them with normal cell walls. peptidoglycan chains released from the penicillin-treated pneumococci contained no attached teichoic acids. The released peptidoglycan was hydrolyzed by M1 muramidase; over 90% of this material adsorbed to vancomycin-Sepharose and behaved like disaccharide-peptide monomers during chromatography, indicating that the released peptidoglycan contained un-cross-linked stem peptides, most of which carried the carboxy-terminal D-alanyl-D-alanine. The N-terminal residue of the released peptidoglycan was alanine, with only a minor contribution from lysine. In addition to the usual stem peptide components of pneumococcal cell walls (alanine, lysine, and glutamic acid), chemical analysis revealed the presence of significant amounts of serine, aspartate, and glycine and a high amount of alanine and glutamate as well. We suggest that these latter amino acids and the excess alanine and glutamate are present as interpeptide bridges. Heterogeneity of these was suggested by the observation that digestion of the released peptidoglycan with the pneumococcal murein hydrolase (amidase) produced peptides that were resolved by ion-exchange chromatography into two distinct peaks; the more highly mobile of these was enriched with glycine and aspartate. The peptidoglycan chains that became attached to the preexisting cell wall in the presence of penicillin contained fewer peptide cross-links and proportionally fewer attached teichoic acids than did their normal counterparts. The normal cell wall was heavily cross-linked, and the cross-linked peptides were distributed equally between the teichoic acid-linked and teichoic acid-free fragments.  相似文献   

3.
Formation of the glycan chains in the synthesis of bacterial peptidoglycan   总被引:19,自引:0,他引:19  
The main structural features of bacterial peptidoglycan are linear glycan chains interlinked by short peptides. The glycan chains are composed of alternating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), all linkages between sugars being beta,1-->4. On the outside of the cytoplasmic membrane, two types of activities are involved in the polymerization of the peptidoglycan monomer unit: glycosyltransferases that catalyze the formation of the linear glycan chains and transpeptidases that catalyze the formation of the peptide cross-bridges. Contrary to the transpeptidation step, for which there is an abundant literature that has been regularly reviewed, the transglycosylation step has been studied to a far lesser extent. The aim of the present review is to summarize and evaluate the molecular and cellullar data concerning the formation of the glycan chains in the synthesis of peptidoglycan. Early work concerned the use of various in vivo and in vitro systems for the study of the polymerization steps, the attachment of newly made material to preexisting peptidoglycan, and the mechanism of action of antibiotics. The synthesis of the glycan chains is catalyzed by the N-terminal glycosyltransferase module of class A high-molecular-mass penicillin-binding proteins and by nonpenicillin-binding monofunctional glycosyltransferases. The multiplicity of these activities in a given organism presumably reflects a variety of in vivo functions. The topological localization of the incorporation of nascent peptidoglycan into the cell wall has revealed that bacteria have at least two peptidoglycan-synthesizing systems: one for septation, the other one for elongation or cell wall thickening. Owing to its location on the outside of the cytoplasmic membrane and its specificity, the transglycosylation step is an interesting target for antibacterials. Glycopeptides and moenomycins are the best studied antibiotics known to interfere with this step. Their mode of action and structure-activity relationships have been extensively studied. Attempts to synthesize other specific transglycosylation inhibitors have recently been made.  相似文献   

4.
We compared the products of autolytic amidase-catalyzed wall degradation in vivo (in penicillin-induced lysis) and in vitro. Pneumococci labeled in their cell wall stem peptides by radioactive lysine were treated with penicillin, and the nature of wall degradation products released to the medium during lysis of the bacteria was determined. At early times of lysis (20% loss of wall label), virtually all the radioactive peptides released (greater than 94%) were of high molecular size and were still attached to glycan and teichoic acid. At times of more extensive bacterial lysis (56%), progressively larger and larger fractions of the released peptides became free, i.e., detached from glycan and teichoic acid. Analysis of the nondegraded residual wall material by high-resolution high-pressure liquid chromatography revealed that this in vivo-triggered autolysis did not involve selective hydrolysis of some of the chemically distinct stem peptides. Parallel in vitro experiments yielded completely different results. Purified pneumococcal cell walls labeled with radioactive lysine were treated in vitro with low concentrations of pure amidase, and the nature of wall degradation products released during limited hydrolysis and after more extensive degradation was determined. In sharp contrast to the in vivo experiments, the main products of in vitro hydrolysis were free peptides. After a short treatment with amidase (resulting in a 20% loss of label), the material released was enriched for the monomeric stem peptides. At all times of hydrolysis (including the time of extensive degradation), only a relatively small fraction of the released wall peptides was covalently attached to glycan and teichoic acid components (17% as compared with 40% in the intact cell wall). We propose that the in vivo-triggered amidase activity first attacks the amide bonds in some strategically located (or unprotected) stem peptides that hold large segments of cell wall material together. The observations indicate that the in vivo activity of the pneumococcal autolysin is under topographic constraints.  相似文献   

5.
Autolysin-defective pneumococci treated with inhibitory concentrations of penicillin and other beta-lactam antibiotics continued to produce non-cross-linked peptidoglycan and cell wall teichoic acid polymers, the majority of which were released into the surrounding medium. The released cell wall polymers were those synthesized by the pneumococci after the addition of the antibiotics. The peptidoglycan and wall teichoic acid chains released were not linked to one another; they could be separated by affinity chromatography on an agarose-linked phosphorylcholine-specific myeloma protein column. Omission of choline, a nutritional requirement and component of the pneumococcal teichoic acid, from the medium inhibited both teichoic acid and peptidoglycan synthesis and release. These observations are discussed in terms of plausible mechanisms for the coordination between the biosynthesis of peptidoglycan and cell wall teichoic acids.  相似文献   

6.
Although the monomeric units of peptidoglycan in Staphylococcus aureus and other staphylococci are well known, the complete structure of the peptidoglycan has not been elucidated. The peptidoglycan monomeric unit may be divided into three parts: (1) glycan chain piece, consisting of N-acetylglucosaminyl-N-acetylmuramic acid; (2) connecting peptide extending from L-alanine to the alpha-amino group of L-lysine; (3) peptide chain piece, consisting of D-alanine, the remainder of L-lysine not included in the connecting peptide, and pentaglycine (S. aureus) or mixed glycine and serine residues (other staphylococci) attached to the epsilon amino group of lysine. The deformation of cross wall into hemisphere in the course of cell division, the distensibility of peptidoglycan, and the appearance of circular (? spiral) lines in the cross wall and on the surface of the newly-formed hemisphere are clues to the structure of peptidoglycan. In the proposed model, cross wall is formed as a linear spiral with 20 turns extending in a plane from periphery to center of the cell. During cell division, the cross wall is bisected. The cross wall spiral becomes a spiral forming the peripheral wall of a new hemisphere. The width of the spiral on the cell surface is maintained by rigid glycan chains and by covalent bonds linking turns of the spiral. The length of the spiral is about 30 times the diameter of the cell. Flexible polypeptide sheets consisting of parallel polypeptide chains run along the length of the spiral. Individual polypeptides contain an average of ten peptide chain pieces. The glycan chain is a helix with two disaccharide residues per turn; consequently consecutive connecting peptides project in opposite directions and are perpendicular both to the glycan chain and to the peptide chain. In cross wall, hydrogen bonding between polypeptide chains enables the polypeptide sheet to transmit changes in tension. The deformation of cross wall into peripheral wall requires doubling of the external surface area of the peptidoglycan. A change in the angle of the glycan chain with respect to the peptide chain results in an increase of the distance between peptide chains, causing the doubling of surface area. Implications of the model include explanations for the initiation of cell division and for the existence of osmotically growth-dependent staphylococci.  相似文献   

7.
The cell wall of Bacillus subtilis is capable of binding different kinds of metal ions. The wall-ion complex appears to be dependent on both phosphoryl from teichoic acid and carboxylate from peptidoglycan. In the present study, cationized ferritin (CF) was used as a probe for charge distribution on the wall of B. subtilis 168. Detergent-extracted cell walls bound CF only on the outer wall face. Completed cell poles bound CF, but septa did not. When the walls were permitted to autolyze briefly, binding of CF occurred on both faces. In contrast, limited hydrolysis of the walls by egg white lysozyme resulted in the penetration of CF into the wall matrix. When walls were made teichoic acid-free, CF-binding asymmetry was preserved, suggesting that carboxyl groups were oriented toward the surface. Walls with carboxylates chemically neutralized also retained charge asymmetry. Phosphate-free and carboxyl-modified walls bound CF only poorly or not at all. These results indicate that negative charges contributed by both phosphate and carboxyl are responsible for the binding of CF and that the observed asymmetry in the distribution of the label is due to the orientation of teichoic acid and muramyl peptides toward the outside of the cell wall, above the plane of the glycan strands.  相似文献   

8.
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells.  相似文献   

9.
Multimodular penicillin-binding proteins (PBPs) are essential enzymes responsible for bacterial cell wall peptidoglycan (PG) assembly. Their glycosyltransferase activity catalyzes glycan chain elongation from lipid II substrate (undecaprenyl-pyrophosphoryl-N-acetylglucosamine-N-acetylmuramic acid-pentapeptide), and their transpeptidase activity catalyzes cross-linking between peptides carried by two adjacent glycan chains. Listeria monocytogenes is a food-borne pathogen which exerts its virulence through secreted and cell wall PG-associated virulence factors. This bacterium has five PBPs, including two bifunctional glycosyltransferase/transpeptidase class A PBPs, namely, PBP1 and PBP4. We have expressed and purified the latter and have shown that it binds penicillin and catalyzes in vitro glycan chain polymerization with an efficiency of 1,400 M(-1) s(-1) from Escherichia coli lipid II substrate. PBP4 also catalyzes the aminolysis (d-Ala as acceptor) and hydrolysis of the thiolester donor substrate benzoyl-Gly-thioglycolate, indicating that PBP4 possesses both transpeptidase and carboxypeptidase activities. Disruption of the gene lmo2229 encoding PBP4 in L. monocytogenes EGD did not have any significant effect on growth rate, peptidoglycan composition, cell morphology, or sensitivity to beta-lactam antibiotics but did increase the resistance of the mutant to moenomycin.  相似文献   

10.
Teichoic acid-glycopeptide complexes were isolated from lysozyme digests of the cell walls of Bacillus coagulans AHU 1631, AHU 1634, and AHU 1638, and the structure of the teichoic acid moieties and their linkage regions was studied. On treatment with hydrogen fluoride, each of the complexes gave a hexosamine-containing disaccharide, which was identified to be glucosyl(beta 1----4)N-acetylglucosamine, in addition to dephosphorylated repeating units of the teichoic acids, namely, galactosyl(alpha 1----2)glycerol and either galactosyl(alpha 1----2)[glucosyl(alpha 1----1/3)]glycerol (AHU 1638) or galactosyl(alpha 1----2)[glucosyl(beta 1----1/3)]glycerol (AHU 1631 and AHU 1634). From the results of Smith degradation, methylation analysis, and partial acid hydrolysis, the teichoic acids from these strains seem to have the same backbone chains composed of galactosyl(alpha 1----2)glycerol phosphate units joined by phosphodiester bonds at C-6 of the galactose residues. The presence of the disaccharide, glucosyl(beta 1----4)N-acetylglucosamine, in the linkage regions between teichoic acids and peptidoglycan was confirmed by the isolation of a disaccharide-linked glycopeptide fragment from each complex after treatment with mild alkali and of a teichoic acid-linked saccharide from each cell wall preparation after treatment with mild acid. Thus, it is concluded that despite structural differences in the glycosidic branches, the teichoic acids in the cell walls of the three strains are linked to peptidoglycan through a common linkage saccharide, glucosyl (beta 1----4) N-acetylglucosamine.  相似文献   

11.
The bacterial cell wall is a mesh polymer of peptidoglycan – linear glycan strands cross‐linked by flexible peptides – that determines cell shape and provides physical protection. While the glycan strands in thin ‘Gram‐negative’ peptidoglycan are known to run circumferentially around the cell, the architecture of the thicker ‘Gram‐positive’ form remains unclear. Using electron cryotomography, here we show that Bacillus subtilis peptidoglycan is a uniformly dense layer with a textured surface. We further show it rips circumferentially, curls and thickens at free edges, and extends longitudinally when denatured. Molecular dynamics simulations show that only atomic models based on the circumferential topology recapitulate the observed curling and thickening, in support of an ‘inside‐to‐outside’ assembly process. We conclude that instead of being perpendicular to the cell surface or wrapped in coiled cables (two alternative models), the glycan strands in Gram‐positive cell walls run circumferentially around the cell just as they do in Gram‐negative cells. Together with providing insights into the architecture of the ultimate determinant of cell shape, this study is important because Gram‐positive peptidoglycan is an antibiotic target crucial to the viability of several important rod‐shaped pathogens including Bacillus anthracis, Listeria monocytogenes, and Clostridium difficile.  相似文献   

12.
The peptidoglycan of Staphylococcus aureus contains relatively short glycan chains and is highly cross-linked via its peptide chains. The material from wild-type (strain H) and mutants H28, H4B and MR-1 was freed from the teichoic-acid-linked component and then hydrolysed by Chalaropsis muramidase to yield disaccharide-repeating units of the glycan with attached peptides either non-cross-linked (monomer) or joined to similar units by one (dimer), two (trimer) or more (oligomer) peptide cross links. The resulting fragments were separated by high-resolution HPLC so that distinguishable components as large as nonamer could be identified. Extrapolation showed that, in S. aureus H, H28 and MR-1, oligomers at least as large as eicosamer formed part of the smooth distribution of oligomer fragments, whereas in strain H4B (PBP4-) the maximum size was around dodecamer. The oligomer distribution profile was related to the polymerization theories of Flory, which allow a distinction to be made between a monomer addition model, whereby each oligomer can only be synthesized by the addition of a single monomer unit to its next lower homologue, and a random addition model, in which an oligomer can be formed by linkage of any combination of its constituent smaller units. In S. aureus close approximation to the random addition model for oligomer synthesis and hence for peptidoglycan cross-linking was observed, both in PBP4+ and PBP4- mutants. The implications for secondary cross-linking in S. aureus cell wall formation are inescapable, although the possibility of an endopeptidase/transpeptidase providing later modification of the peptidoglycan is not completely ruled out.  相似文献   

13.
Genes involved in the synthesis of poly(glycerol phosphate) wall teichoic acid have been identified in the tag locus of the model Gram-positive organism Bacillus subtilis 168. The functions of most of these gene products are predictable from sequence similarity to characterized proteins and have provided limited insight into the intracellular synthesis and translocation of wall teichoic acid. Nevertheless, critical steps of poly(glycerol phosphate) teichoic acid polymerization continue to be a puzzle. TagB and TagF, encoded in the tag locus, do not show sequence similarity to characterized proteins. We recently showed that recombinant TagF could catalyze glycerol phosphate polymerization in vitro. Based largely on homology to TagF, the TagB protein has been proposed to catalyze either an intracellular glycerophosphotransfer reaction or the extracellular teichoic acid/peptidoglycan ligation reaction. Here we have taken steps to characterize TagB, particularly through in vivo localization studies and in vitro biochemical assay, in order to make a case for either role in teichoic acid biogenesis. We have shown that TagB associates peripherally with the intracellular face of the cell membrane in vivo. We have also produced recombinant TagB and used it to demonstrate the enzymatic incorporation of labeled glycerol phosphate onto a membrane-bound acceptor. The data collected from this and the accompanying study are strongly supportive of a role for TagB in B. subtilis 168 teichoic acid biogenesis as the CDP-glycerol:N-acetyl-beta-d-mannosaminyl-1,4-N-acetyl-d-glucosaminyldiphosphoundecaprenyl glycerophosphotransferase. Here we use the trivial name "Tag primase."  相似文献   

14.
The cell walls isolated from axenically grown leprosy-derived corynebacteria were submitted to various chemical and enzymatic degradations. The glycan strands of the wall peptidoglycan are essentially composed of N-acetylglycosaminyl-N-acetylmuramic acid disaccharide units. Small amounts of N-acetylglycosaminyl-N-glycolylmuramic acid (less than 10%) were also detected. The muramic acid residues of adjacent glycan strands are substituted by amidated tetrapeptide units which, in turn, are cross-linked through direct linkages extending between the C-terminal D-alanine residue of one tetrapeptide and the mesodiaminopimelic acid residue of another tetrapeptide. Such a structure is very similar to that of the wall peptidoglycan found in the taxonomically related microorganisms of the Corynebacterium, Mycobacterium, and Nocardia groups.  相似文献   

15.
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.  相似文献   

16.
The cell wall of lactic acid bacteria has the typical Gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attribut es of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids.  相似文献   

17.
Bacterial cell wall peptidoglycans are built from unbranched β-(1 → 4)-linked glycan chains composed of alternately repeating units of N-acetylglucosamine and N-acetylmuramic acid residues, with peptide side chains attached to the muramic acid residues. The glycan chains are interconnected by peptide bonds formed between the peptide side chains. Through the use of three-dimensional molecular models, two configurations of the glycan strands and the peptide side chains are described, which by their constancy of form reflect the fundamental constancies of the covalent structures. Each of these two models will accommodate any chemical modification that has been observed in bacteria without change in the configuration of the peptide backbone. Some alterations in the chemical structure, which have been sought in bacteria, but not found, would not be tolerated by the models. In these models, glycan strands are parallel, with their lengths and widths predominantly in the plane of the cell wall. The cross-bridging portions of the peptide side chains are at right angles to the glycan strand, in a separate, parallel plane. A compact model is presented in which the peptide side chain is closely appressed to the glycan strand and is stabilized by three hydrogen bonds per disaccharide–peptide subunit. In a second model, the peptide side chain is raised away from the glycan strand in an entirely extended configuration. The compact and extended forms are interconvertible. The thickness of a sheet of peptidoglycan would be from 10.6 to 11.1 Å for the compact model, and 19.1 Å for the extended model.  相似文献   

18.
Preparations of membrane plus wall derived from Bacillus subtilis W23 were used to study the in vitro synthesis of peptidoglycan and teichoic acid and their linkage to the preexisting cell wall. The teichoic acid synthesis showed an ordered requirement for the incorporation of N-acetylglucosamine from uridine 5'-diphosphate (UDP)-N-acetylglucosamine followed by addition of glycerol phosphate from cytidine 5'-diphosphate (CDP)-glycerol and finally by addition of ribitol phosphate from CDP-ribitol. UDP-N-acetylglucosamine was not only required for the synthesis of the teichoic acid, but N-acetylglucosamine residues formed an integral part of the linkage unit attaching polyribitol phosphate to the cell wall. Synthesis of the teichoic acid was exquisitely sensitive to the antibiotic tunicamycin, and this was shown to be due to the inhibition of incorporation of N-acetylglucosamine units from UDP-N-acetylglucosamine.  相似文献   

19.
The biosynthesis of peptidoglycan and teichoic acid by reverting protoplasts of Bacillus licheniformis 6346 His-, in cubated at 35 C on medium containing 2.5% agar, is detectable after 40 min. The amount of N-acetyl-[1-14C]glucosamine incorporated into peptidoglycan and teichoic acid on continued incubation doubles at the same rate as the incorporation of [3H]tryptophan into protein. At the early stages of reversion the average glycan chain length, measured by the ratio of free reducing groups of muramic acid and glucosamine to total muramic acid present, is very short. As reversion proceeds, the average chain length increases to a value similar to the found in the wall of the parent bacillus. The extent of cross-linkage found in the peptide side chains of the peptidoglycan also increases as reversion proceeds. At the completion of reversion the wall material synthesized has similar characteristics to those of the walls of the parent bacilli, containing peptidoglycan and teichoic and teichuronic acids in about the same proportions. Soluble peptidoglycan can be isolated from the reversion medium, amounting to 30% of the total formed after 3 h of incubation and 8% after 12 h. This amount was reduced by the presence in the medium of the walls of an autolysin-deficient mutant; they were not formed at all by reverting protoplasts of the autolysin-deficient mutant itself. Analysis of the soluble material provided additional evidence for their being autolytic products rather than small unchanged molecules. When protoplasts were incubated on medium containing only 0.8% agar, 53 to 67% of the peptidoglycan formed after 3 h of incubation was soluble, and 21% after 12 h. Fibers that appeared to be sheared from the protoplasts at intermediate stages of reversion on medium containing 2.5% agar were similar in composition to the bacillary walls.  相似文献   

20.
Envelope biogenesis in bacteria involves synthesis of intermediates that are tethered to the lipid carrier undecaprenol-phosphate. LytR-CpsA-Psr (LCP) enzymes have been proposed to catalyze the transfer of undecaprenol-linked intermediates onto the C6-hydroxyl of MurNAc in peptidoglycan, thereby promoting attachment of wall teichoic acid (WTA) in bacilli and staphylococci and capsular polysaccharides (CPS) in streptococci. S. aureus encodes three lcp enzymes, and a variant lacking all three genes (Δlcp) releases WTA from the bacterial envelope and displays a growth defect. Here, we report that the type 5 capsular polysaccharide (CP5) of Staphylococcus aureus Newman is covalently attached to the glycan strands of peptidoglycan. Cell wall attachment of CP5 is abrogated in the Δlcp variant, a defect that is best complemented via expression of lcpC in trans. CP5 synthesis and peptidoglycan attachment are not impaired in the tagO mutant, suggesting that CP5 synthesis does not involve the GlcNAc-ManNAc linkage unit of WTA and may instead utilize another Wzy-type ligase to assemble undecaprenyl-phosphate intermediates. Thus, LCP enzymes of S. aureus are promiscuous enzymes that attach secondary cell wall polymers with discrete linkage units to peptidoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号