首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.  相似文献   

2.
Arrestins are multifunctional signaling adaptors originally discovered as proteins that "arrest" G protein activation by G protein-coupled receptors (GPCRs). Recently GPCR complexes with arrestins have been proposed to activate G protein-independent signaling pathways. In particular, arrestin-dependent activation of extracellular signal-regulated kinase 1/2 (ERK1/2) has been demonstrated. Here we have performed in vitro binding assays with pure proteins to demonstrate for the first time that ERK2 directly binds free arrestin-2 and -3, as well as receptor-associated arrestins-1, -2, and -3. In addition, we showed that in COS-7 cells arrestin-2 and -3 association with β(2)-adrenergic receptor (β2AR) significantly enhanced ERK2 binding, but showed little effect on arrestin interactions with the upstream kinases c-Raf1 and MEK1. Arrestins exist in three conformational states: free, receptor-bound, and microtubule-associated. Using conformationally biased arrestin mutants we found that ERK2 preferentially binds two of these: the "constitutively inactive" arrestin-Δ7 mimicking microtubule-bound state and arrestin-3A, a mimic of the receptor-bound conformation. Both rescue arrestin-mediated ERK1/2/activation in arrestin-2/3 double knockout fibroblasts. We also found that arrestin-2-c-Raf1 interaction is enhanced by receptor binding, whereas arrestin-3-c-Raf1 interaction is not.  相似文献   

3.
4.
G protein-coupled receptors (GPCR) can participate in a number of signaling pathways, and this property led to the concept of biased GPCR agonism. Agonists, antagonists and allosteric modulators can bind to GPCRs in different ways, creating unique conformations that differentially modulate signaling through one or more G proteins. A unique neuromedin B (NMBR) GPCR-signaling platform controlling mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP9) crosstalk has been reported in the activation of the insulin receptor (IR) through the modification of the IR glycosylation. Here, we propose that there exists a biased GPCR agonism as small diffusible molecules in the activation of Neu1-mediated insulin receptor signaling. GPCR agonists bombesin, bradykinin, angiotensin I and angiotensin II significantly and dose-dependently induce Neu1 sialidase activity and IR activation in human IR-expressing rat hepatoma cell lines (HTC-IR), in the absence of insulin. Furthermore, the GPCR agonist-induced Neu1 sialidase activity could be specifically blocked by the NMBR inhibitor, BIM-23127. Protein expression analyses showed that these GPCR agonists significantly induced phosphorylation of IRβ and insulin receptor substrate-1 (IRS1). Among these, angiotensin II was the most potent GPCR agonist capable of promoting IRβ phosphorylation in HTC-IR cells. Interestingly, treatment with BIM-23127 and Neu1 inhibitor oseltamivir phosphate were able to block GPCR agonist-induced IR activation in HTC cells in vitro. Additionally, we found that angiotensin II receptor (type I) exists in a multimeric receptor complex with Neu1, IRβ and NMBR in naïve (unstimulated) and stimulated HTC-IR cells with insulin, bradykinin, angiotensin I and angiotensin II. This complex suggests a molecular link regulating the interaction and signaling mechanism between these molecules on the cell surface. These findings uncover a biased GPCR agonist-induced IR transactivation signaling axis, mediated by Neu1 sialidase and the modification of insulin receptor glycosylation.  相似文献   

5.
Seven transmembrane receptors (7TMRs) are proteins that convey signals through changes in conformation. These conformations are stabilized by external molecules (i.e. agonists, antagonists, modulators) and act upon other bodies (termed ‘guests’) which can be other molecules in the extracellular space, or proteins along the plane of the membrane (receptor oligomerization) or signaling proteins in the cytosol (i.e. G protein, β-arrestin). These elements comprise allosteric systems and a great deal of 7TMR pharmacology can be considered in terms of allosteric behavior. Allosteric ligands acting on 7TMRs possess four unique behaviors that can be valuable therapeutically; () the ability to alter the interaction of very large proteins, () probe dependence, () saturable effect, and () induction of separate changes in affinity and efficacy of other ligands. Two of these behaviors (namely probe dependence for CCR5-based HIV-1 entry inhibitors and functional selectivity for biased agonism) will be highlighted with examples.  相似文献   

6.
7.
8.
G protein-coupled receptors (GPCRs) signal through a limited number of G-protein pathways and play crucial roles in many biological processes. Studies of their in vivo functions have been hampered by the molecular and functional diversity of GPCRs and the paucity of ligands with specific signaling effects. To better compare the effects of activating different G-protein signaling pathways through ligand-induced or constitutive signaling, we developed a new series of RASSLs (receptors activated solely by synthetic ligands) that activate different G-protein signaling pathways. These RASSLs are based on the human 5-HT(4b) receptor, a GPCR with high constitutive G(s) signaling and strong ligand-induced G-protein activation of the G(s) and G(s/q) pathways. The first receptor in this series, 5-HT(4)-D(100)A or Rs1 (RASSL serotonin 1), is not activated by its endogenous agonist, serotonin, but is selectively activated by the small synthetic molecules GR113808, GR125487, and RO110-0235. All agonists potently induced G(s) signaling, but only a few (e.g., zacopride) also induced signaling via the G(q) pathway. Zacopride-induced G(q) signaling was enhanced by replacing the C-terminus of Rs1 with the C-terminus of the human 5-HT(2C) receptor. Additional point mutations (D(66)A and D(66)N) blocked constitutive G(s) signaling and lowered ligand-induced G(q) signaling. Replacing the third intracellular loop of Rs1 with that of human 5-HT(1A) conferred ligand-mediated G(i) signaling. This G(i)-coupled RASSL, Rs1.3, exhibited no measurable signaling to the G(s) or G(q) pathway. These findings show that the signaling repertoire of Rs1 can be expanded and controlled by receptor engineering and drug selection.  相似文献   

9.
The hypothalamic hormone gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of the pituitary gonadotropins. GnRH acts through a plasma membrane receptor that is a member of the G protein-coupled receptor (GPCR) family. These receptors interact with heterotrimeric G proteins to initiate downstream signaling. In this study, we have investigated which G proteins are involved in GnRH receptor-mediated signaling in L beta T2 pituitary gonadotrope cells. We have shown previously that GnRH activates ERK and induces the c-fos and LH beta genes in these cells. Signaling via the G(i) subfamily of G proteins was excluded, as neither ERK activation nor c-Fos and LH beta induction was impaired by treatment with pertussis toxin or a cell-permeable peptide that sequesters G beta gamma-subunits. GnRH signaling was partially mimicked by adenoviral expression of a constitutively active mutant of G alpha(q) (Q209L) and was blocked by a cell-permeable peptide that uncouples G alpha(q) from GPCRs. Furthermore, chronic activation of G alpha(q) signaling induced a state of GnRH resistance. A cell-permeable peptide that uncouples G alpha(s) from receptors was also able to inhibit ERK, c-Fos, and LH beta, indicating that both G(q/11) and G(s) proteins are involved in signaling. Consistent with this, GnRH caused GTP loading on G(s) and G(q/11) and increased intracellular cAMP. Artificial elevation of cAMP with forskolin activated ERK and caused a partial induction of c-Fos. Finally, treatment of G alpha(q) (Q209L)-infected cells with forskolin enhanced the induction of c-Fos showing that the two pathways are independent and additive. Taken together, these results indicate that the GnRH receptor activates both G(q) and G(s) signaling to regulate gene expression in L beta T2 cells.  相似文献   

10.
In human myometrial cells, the promiscuous coupling of the oxytocin receptors (OTRs) to G(q) and G(i) leads to contraction. However, the activation of OTRs coupled to different G protein pathways can also trigger opposite cellular responses, e.g. OTR coupling to G(i) inhibits, whereas its coupling to G(q) stimulates, cell proliferation. Drug analogues capable of promoting a selective receptor-G protein coupling may be of great pharmacological and clinical importance because they may target only one specific signal transduction pathway. Here, we report that atosiban, an oxytocin derivative that acts as a competitive antagonist on OTR/G(q) coupling, displays agonistic properties on OTR/G(i) coupling, as shown by specific (35)S-labeled guanosine 5'-3-O-(thio) trisphosphate ([(35)S]GTPgammaS) binding. Moreover, atosiban, by acting on a G(i)-mediated pathway(,) inhibits cell growth of HEK293 and Madin-Darby canine kidney cells stably transfected with OTRs and of DU145 prostate cancer cells expressing endogenous OTRs. Notably, atosiban leads to persistent ERK1/2 activation and p21(WAF1/CIP1) induction, the same signaling events leading to oxytocin-mediated cell growth inhibition via a G(i) pathway. Finally, atosiban exposure did not cause OTR internalization and led to only a modest decrease (20%) in the number of high affinity cell membrane OTRs, two observations consistent with the finding that atosiban did not lead to any desensitization of the oxytocin-induced activation of the G(q)-phospholipase C pathway. Taken together, these observations indicate that atosiban acts as a "biased agonist" of the human OTRs and thus belongs to the class of compounds capable of selectively discriminating only one among the multiple possible active conformations of a single G protein-coupled receptor, thereby leading to the selective activation of a unique intracellular signal cascade.  相似文献   

11.
G protein-coupled receptors (GPCRs) are known to modulate intracellular effectors involved in cardiac function. We recently reported homocysteine (Hcy)-induced ERK-phosphorylation was suppressed by pertussis toxin (PTX), which suggested the involvement of GPCRs in initiating signal transduction. An activated GPCR undergoes down regulation via a known mechanism involving ERK, GRK2, beta-arrestin1: ERK activity increases; GRK2 activity increases; beta-arrestin1 is degraded. We hypothesized that Hcy treatment leads to GPCR activation and down regulation. Microvascular endothelial cells were treated with Hcy. Expression of phospho-ERK1 and phospho-GRK2 was determined using Western blot, standardized to ERK1, GRK2, and beta-actin. Hcy was shown to dephosphorylate GRK2, thereby enhancing the activity. The results provided further evidence that Hcy acts as an agonist to activate GPCRs, followed by their down regulation. Hcy was also shown to decrease the content of the following G proteins and other proteins: beta-arrestin1, Galpha(q/11), Galpha(12/13), G(i/o).  相似文献   

12.
The N-formyl peptide receptor-like 1 (FPRL1) is a G protein-coupled receptor (GPCR) that transmits intracellular signals in response to a variety of agonists, many of them being clearly implicated in human pathology. beta-arrestins are adaptor proteins that uncouple GPCRs from G protein and regulate receptor internalization. They can also function as signal transducers through the scaffolding of signaling molecules, such as components of the extracellular signal-regulated kinase (ERK) cascade. We investigated the role of beta-arrestins in ligand-induced FPRL1 internalization and signaling. In HEK293 cells expressing FPRL1, fluorescence microscopy revealed that agonist-stimulated FPRL1 remained co-localized with beta-arrestins during endocytosis. Internalization of FPRL1, expressed in a mouse embryonic fibroblast (MEF) cell line lacking endogenous beta-arrestins, was highly compromised. This distinguishes FPRL1 from the prototypical formyl peptide receptor FPR that is efficiently internalized in the absence of beta-arrestins. In both HEK293 and MEF cells, FPRL1-mediated ERK1/2 activation was a rapid and transient event. The kinetics and extent of ERK1/2 activation were not significantly modified by beta-arrestin overexpression. The pattern of FPRL1-mediated ERK1/2 activation was similar whether cells express or not beta-arrestins. Furthermore, treatment of the FPRL1 expressing cells with pertussis toxin inhibited ERK1/2 activation in MEF and in HEK293 cells. These results led us to conclude that activation of ERK1/2 mediated by FPRL1 occurs primarily through G protein signaling. Since beta-arrestin-mediated signaling has been observed essentially for receptors coupled to G proteins other than G(i), this may be a characteristic of G(i) protein-coupled chemoattractant receptors.  相似文献   

13.
The 7-transmembrane or G protein-coupled receptors relay signals from hormones and sensory stimuli to multiple signaling systems at the intracellular face of the plasma membrane including heterotrimeric G proteins, ERK1/2, and arrestins. It is an emerging concept that 7-transmembrane receptors form oligomers; however, it is not well understood which roles oligomerization plays in receptor activation of different signaling systems. To begin to address this question, we used the angiotensin II type 1 (AT(1)) receptor, a key regulator of blood pressure and fluid homeostasis that in specific context has been described to activate ERKs without activating G proteins. By using bioluminescence resonance energy transfer, we demonstrate that AT(1) receptors exist as oligomers in transfected COS-7 cells. AT(1) oligomerization was both constitutive and receptor-specific as neither agonist, antagonist, nor co-expression with three other receptors affected the bioluminescence resonance energy transfer 2 signal. Furthermore, the oligomerization occurs early in biosynthesis before surface expression, because we could control AT(1) receptor export from the endoplasmic reticulum or Golgi by using regulated secretion/aggregation technology (RPD trade mark ). Co-expression studies of wild type AT(1) and AT(1) receptor mutants, defective in either ligand binding or G protein and ERK activation, yielded an interesting result. The mutant receptors specifically exerted a dominant negative effect on Galpha(q) activation, whereas ERK activation was preserved. These data suggest that distinctly active conformations of AT(1) oligomers can couple to each of these signaling systems and imply that oligomerization plays an active role in supporting these distinctly active conformations of AT(1) receptors.  相似文献   

14.
G-protein coupled receptors (GPCRs) have long been known as receptors that activate G protein-dependent cellular signaling pathways. In addition to the G protein-dependent pathways, recent reports have revealed that several ligands called “biased ligands” elicit G protein-independent and β-arrestin-dependent signaling through GPCRs (biased agonism). Several β-blockers are known as biased ligands. All β-blockers inhibit the binding of agonists to the β-adrenergic receptors. In addition to β-blocking action, some β-blockers are reported to induce cellular responses through G protein-independent and β-arrestin-dependent signaling pathways. However, the physiological significance induced by the β-arrestin-dependent pathway remains much to be clarified in vivo. Here, we demonstrate that metoprolol, a β1-adrenergic receptor-selective blocker, could induce cardiac fibrosis through a G protein-independent and β-arrestin2-dependent pathway. Metoprolol, a β-blocker, increased the expression of fibrotic genes responsible for cardiac fibrosis in cardiomyocytes. Furthermore, metoprolol induced the interaction between β1-adrenergic receptor and β-arrestin2, but not β-arrestin1. The interaction between β1-adrenergic receptor and β-arrestin2 by metoprolol was impaired in the G protein-coupled receptor kinase 5 (GRK5)-knockdown cells. Metoprolol-induced cardiac fibrosis led to cardiac dysfunction. However, the metoprolol-induced fibrosis and cardiac dysfunction were not evoked in β-arrestin2- or GRK5-knock-out mice. Thus, metoprolol is a biased ligand that selectively activates a G protein-independent and GRK5/β-arrestin2-dependent pathway, and induces cardiac fibrosis. This study demonstrates the physiological importance of biased agonism, and suggests that G protein-independent and β-arrestin-dependent signaling is a reason for the diversity of the effectiveness of β-blockers.  相似文献   

15.
Substance P analogues including [d-Arg1,d-Phe5,d-Trp7,9,Leu11]substance P (SpD) act as "broad spectrum neuropeptide antagonists" and are potential anticancer agents that inhibit the growth of small cell lung cancer cells in vitro and in vivo. However, their mechanism of action is controversial and not fully understood. Although these compounds block bombesin-induced mitogenesis and signal transduction, they also have agonist activity. The mechanism underlying this agonist activity was examined. SpD binds to the ligand-binding site of the bombesin/gastrin-releasing peptide receptor and blocks the bombesin-stimulated increase in [Ca2+]i within the same concentration range that causes sustained activation of c-Jun N-terminal kinase and extracellular signal-regulated protein kinase (ERK). The activation of c-Jun N-terminal kinase by SpD and bombesin is blocked by dominant negative inhibition of G(alpha12). The ERK activation by SpD is pertussis toxin-sensitive in contrast to ERK activation by bombesin, which is pertussis toxin-insensitive but dependent on epidermal growth factor receptor phosphorylation. SpD does not simply act as a partial agonist but differentially modulates the activation of the G-proteins G(alpha12), G(i), and G(q) compared with bombesin. This unique ability allows the bombesin receptor to couple to G(i) and at the same time block receptor activation of G(q). Our results provide direct evidence that SpD is acting as a "biased agonist" and that this has physiological relevance in small cell lung cancer cells. This validation of the concept of biased agonism has important implications in the development of novel pharmacological agents to dissect receptor-mediated signal transduction and of highly selective drugs to treat human disease.  相似文献   

16.
Formyl peptide receptor (FPR) and C5a receptor (C5aR) are chemoattractant G protein-coupled receptors (GPCRs) involved in the innate immune response against bacterial infections and tissue injury. Like other GPCRs, they recruit beta-arrestin1/2 to the plasma membrane and activate the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Previous studies with several GPCRs have suggested that beta-arrestins play an important role as signal transducers by scaffolding signaling molecules such as ERK1/2. This function of the beta-arrestins was not discovered until several years after their role in desensitization and endocytosis had been reported. In this study, we investigated the role of the beta-arrestins in the activation of ERK1/2 and receptor endocytosis. We took advantage of previously described mutants of FPR that have defects in G(i) coupling or beta-arrestin recruitment. The results obtained with the mutant FPRs, as well as experiments using an inhibitor of G(i) and cells overexpressing beta-arrestin2, showed that activation of ERK1/2 takes place through G(i) and is not affected by beta-arrestins. However, overexpression of beta-arrestin2 does enhance FPR sequestration from the cell surface, suggesting a role in desensitization, as shown for many other GPCRs. Experiments with CHO C5aR cells showed similar sensitivity to the G(i) inhibitor as CHO FPR cells, suggesting that the predominant activation of ERK1/2 through G protein may be a common characteristic among chemoattractant receptors.  相似文献   

17.
Wong SK 《Neuro-Signals》2003,12(1):1-12
GTP-binding protein coupled receptors (GPCRs) bind to a vast diversity of extracellular ligands to regulate a wide variety of physiological responses. Upon binding of extracellular ligands, these seven-transmembrane-spanning receptor molecules couple to one or several subtypes of G protein which reside at the intracellular side of the plasma membrane to trigger intracellular signaling events. Amid the large structural diversity at the intracellular regions of GPCRs, there are only 18 different subtypes of G protein belonging to four subfamilies. The question of how GPCRs select and activate a single or multiple G protein subtype(s) has been the topic of intense investigations. This review will attempt to summarize the available data on the structural determinants in GPCRs that regulate the selectivity of G protein activation. The available data suggest that G protein can be activated by structurally diverse cationic alpha-helical structures with no obvious homology in primary sequence. The selectivity of receptor-G protein coupling is maintained by a combination of two functional domains at the intracellular region. One is the 'activation domain' which can activate multiple G protein subtypes, while the other is the 'selectivity domain' which restricts the coupling to the desired signaling pathway(s). A slight change in the conformation at these two functional domains can affect the fidelity of G protein selectivity. This hypothesis can account for the vast structural diversity of GPCRs which link a fascinating variety of extracellular inputs, yet couple to a limited number of intracellular signaling pathways.  相似文献   

18.
The discovery of β-arrestin-dependent GPCR signaling has led to an exciting new field in GPCR pharmacology: to develop “biased agonists” that can selectively target a specific downstream signaling pathway that elicits beneficial therapeutic effects without activating other pathways that elicit negative side effects. This new trend in GPCR drug discovery requires us to understand the structural and molecular mechanisms of β-arrestin-biased agonism, which largely remain unclear. We have used cutting-edge mass spectrometry (MS)-based proteomics, combined with systems, chemical and structural biology to study protein function, macromolecular interaction, protein expression and posttranslational modifications in the β-arrestin-dependent GPCR signaling. These high-throughput proteomic studies have provided a systems view of β-arrestin-biased agonism from several perspectives: distinct receptor phosphorylation barcode, multiple receptor conformations, distinct β-arrestin conformations, and ligand-specific signaling. The information obtained from these studies offers new insights into the molecular basis of GPCR regulation by β-arrestin and provides a potential platform for developing novel therapeutic interventions through GPCRs.  相似文献   

19.
G-protein-coupled receptors (GPCRs) activate heterotrimeric G-proteins (G(i)-, G(s)-, G(q)-, or G(12)-like) to generate specific intracellular responses, depending on the receptor/G-protein coupling. The aim was to enable a majority of GPCRs to generate a predetermined output by signaling through a single G-protein-supported pathway. The authors focused on calcium responses as the output, then engineered Galpha(q) to promote promiscuous receptor interactions. Starting with a human Galpha(q) containing 5 Galpha(z) residues in the C-terminal receptor recognition domain (hGalpha(q/z5)), they evaluated agonist-stimulated calcium responses for 33 diverse GPCRs (G(i)-, G(s)-, and G(q)-coupled) and found 20 of 33 responders. In parallel, they tested Caenorhabditis elegans Galpha(q) containing 5 or 9 C-terminal Galpha(z) residues (cGalpha(q/z5), cGalpha(q/z9)). Signal detection was enhanced with cGalpha(q/z5) and cGalpha(q/z9) (yielding 25/33 and 26/33 responders, respectively). In a separate study of Galpha(s)-coupled receptors, the authors compared hGalpha(q/s5) versus hGalpha(q/s9), cGalpha(q/s9), andcGalphaq/s21 and observed optimal function with cGalpha(q/s9). Cotransfection of an engineered Galpha(q) "cocktail" (cGalpha(q/z5) plus cGalpha(q/s9)) provided a powerful and efficient screening platform. When the chimeras included N-terminal myristoylation sites (to promote membrane localization), calcium responses were sustained or improved, depending on the receptor. This approach toward a "universal functional assay" is particularly useful for orphan GPCRs whose signaling pathways are unknown.  相似文献   

20.
G protein–coupled receptors (GPCRs) exist in multiple dynamic states (e.g., ligand-bound, inactive, G protein–coupled) that influence G protein activation and ultimately response generation. In quantitative models of GPCR signaling that incorporate these varied states, parameter values are often uncharacterized or varied over large ranges, making identification of important parameters and signaling outcomes difficult to intuit. Here we identify the ligand- and cell-specific parameters that are important determinants of cell-response behavior in a dynamic model of GPCR signaling using parameter variation and sensitivity analysis. The character of response (i.e., positive/neutral/inverse agonism) is, not surprisingly, significantly influenced by a ligand's ability to bias the receptor into an active conformation. We also find that several cell-specific parameters, including the ratio of active to inactive receptor species, the rate constant for G protein activation, and expression levels of receptors and G proteins also dramatically influence agonism. Expressing either receptor or G protein in numbers several fold above or below endogenous levels may result in system behavior inconsistent with that measured in endogenous systems. Finally, small variations in cell-specific parameters identified by sensitivity analysis as significant determinants of response behavior are found to change ligand-induced responses from positive to negative, a phenomenon termed protean agonism. Our findings offer an explanation for protean agonism reported in β2--adrenergic and α2A-adrenergic receptor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号