首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Gertrud Kolb 《Zoomorphology》1986,106(4):244-246
Summary The ommatidia in the two dorsal rows at the rim of the eye of Aglais urticae differ from all the other ommatidia of the large dorsal area, in rhabdom structure, length, and configuration of the ninth retinula cell. The type of rhabdom in this dorsal rim zone provides the structural prerequisites for the reception of polarized light; functional subdivision of the retina into two parts is indicated.  相似文献   

2.
Summary The superposition eye of the cockchafer, Melolontha melolontha, exhibits the typical features of many nocturnal and crepuscular scarabaeid beetles: the dioptric apparatus of each ommatidium consists of a thick corneal lens with a strong inner convexity attached to a crystalline cone, that is surrounded by two primary and 9–11 secondary pigment cells. The clear zone contains the unpigmented extensions of the secondary pigment cells, which surround the cell bodies of seven retinula (receptor) cells per ommatidium and a retinular tract formed by them. The seven-lobed fused rhabdoms are composed by the rhabdomeres of the receptor cells 1–7. The rhabdoms are optically separated from each other by a tracheal sheath around the retinulae. The orientation of the microvilli diverges in a fan-like fashion within each rhabdomere. The proximally situated retinula cell 8 does not form a rhabdomere. This standard form of ommatidium stands in contrast to another type of ommatidium found in the dorsal rim area of the eye. The dorsal rim ommatidia are characterized by the following anatomical specializations: (1) The corneal lenses are not clear but contain light-scattering, bubble-like inclusions. (2) The rhabdom length is increased approximately by a factor of two. (3) The rhabdoms have unlobed shapes. (4) Within each rhabdomere the microvilli are parallel to each other. The microvilli of receptor 1 are oriented 90° to those of receptors 2–7. (5) The tracheal sheaths around the retinulae are missing. These findings indicate that the photoreceptors of the dorsal rim area are strongly polarization sensitive and have large visual fields. In the dorsal rim ommatidia of other insects, functionally similar anatomical specializations have been found. In these species, the dorsal rim area of the eye was demonstrated to be the eye region that is responsible for the detection of polarized light. We suggest that the dorsal rim area of the cockchafer eye subserves the same function and that the beetles use the polarization pattern of the sky for orientation during their migrations.  相似文献   

3.
We have examined the fine structure of dorsal rim ommatidia in the compound eye of the three odonate species Sympetrum striolatum, Aeshna cyanea and Ischnura elegans. These ommatidia exhibit several specializations: (1) the rhabdoms are very short, (2) there is no rhabdomeric twist, and (3) the rhabdoms contain only two, orthogonally-arranged microvillar orientations. The dorsal rim ommatidia of several other insect species are known to be anatomically specialized in a similar way and to be responsible for polarization vision. We suggest that the dorsal rim area of the odonate compound eye plays a similar role in polarization vision. Since the Odonata are a primitive group of insects, the use of polarized skylight for navigation may have developed early in insect phylogeny.  相似文献   

4.
The presence of a specialised dorsal rim area with an ability to detect the e-vector orientation of polarised light is shown for the first time in a nocturnal hymenopteran. The dorsal rim area of the halictid bee Megalopta genalis features a number of characteristic anatomical specialisations including an increased rhabdom diameter and a lack of primary screening pigments. Optically, these specialisations result in wide spatial receptive fields (Δρ = 14°), a common adaptation found in the dorsal rim areas of insects used to filter out interfering effects (i.e. clouds) from the sky. In this specialised eye region all nine photoreceptors contribute their microvilli to the entire length of the ommatidia. These orthogonally directed microvilli are anatomically arranged in an almost linear, anterior–posterior orientation. Intracellular recordings within the dorsal rim area show very high polarisation sensitivity and a sensitivity peak within the ultraviolet part of the spectrum.  相似文献   

5.
Many insects exploit sky light polarization for navigation or cruising-course control. The detection of polarized sky light is mediated by the ommatidia of a small specialized part of the compound eye: the dorsal rim area (DRA). We describe the morphology and fine structure of the DRA in monarch butterflies (Danaus plexippus). The DRA consists of approximately 100 ommatidia forming a narrow ribbon along the dorsal eye margin. Each ommatidium contains two types of photoreceptor with mutually orthogonal microvilli orientations occurring in a 2:6 ratio. Within each rhabdomere, the microvilli are well aligned. Rhabdom structure and orientation remain constant at all retinal levels, but the rhabdom profiles, as seen in tangential sections through the DRA, change their orientations in a fan-like fashion from the frontal to the caudal end of the DRA. Whereas these properties (two microvillar orientations per rhabdom, microvillar alignment along rhabdomeres, ommatidial fan array) are typical for insect DRAs in general, we also report and discuss here a novel feature. The ommatidia of monarch butterflies are equipped with reflecting tapeta, which are directly connected to the proximal ends of the rhabdoms. Although tapeta are also present in the DRA, they are separated from the rhabdoms by a space of approximately 55 μm effectively inactivating them. This reduces self-screening effects, keeping polarization sensitivity of all photoreceptors of the DRA ommatidia both high and approximately equal.  相似文献   

6.
In many insect species, a dorsal rim area (DRA) in the compound eye is adapted to analyze the sky polarization pattern for compass orientation. In the desert locust Schistocerca gregaria, these specializations are particularly striking. The DRA of the locust consists of about 400 ommatidia. The facets have an irregular shape, and pore canals are often present in the corneae. Screening pigment is missing in the region of the dioptric apparatus suggesting large receptive fields. The rhabdoms are shorter, but about four times larger in cross-section than the rhabdoms of ordinary ommatida. Eight retinula cells contribute to the rhabdom. The microvilli of retinula cell 7 and of cells 1, 2, 5, 6, 8 are highly aligned throughout the rhabdom and form two blocks of orthogonal orientation. The microvilli in the minute rhabdomeres of retinula cells 3 and 4, in contrast, show no particular alignment. As in other insect species, microvillar orientations are arranged in a fan-like pattern across the DRA. Photoreceptor axons project to distinct areas in the dorsal lamina and medulla. The morphological specializations in the DRA of the locust eye most likely maximize the polarization sensitivity and suggest that the locust uses this eye region for analysis of the sky polarization pattern.  相似文献   

7.
The peripheral regions of the fly eye show a number of specializations. First, immediately interior to the circumscribing head capsule and completely encircling the rest of the eye lies a thick band of pigment cells (pigment rim; PR). Second, in the dorsal periphery of the eye directly interior to the PR lie the dorsal rim (DR) ommatidia that are specialized polarized light detectors. The equivalent position in the ventral eye is occupied by standard ommatidia. Third, ommatidia characteristically project mechanosensory hairs above their lenses, but in the most peripheral rows (including the DR) the ommatidia are bald. Wingless secreted from the head capsule appears to organize all these peripheral specializations. Higher Wg levels induce PR, intermediate levels induce DR, and lower levels induce baldness. The predisposition of dorsal cells to generate DR ommatidia appears to be endowed by the exclusive dorsal expression of Iroquois genes.  相似文献   

8.
Polarization sensitivity in arthropod photoreceptors is crucially dependent on the arrangement of the microvilli within the rhabdom. Here, we present an electron-microscopical study in which the degree of microvillar alignment and changes in the cross-sectional areas of the rhabdoms along their length were studied in the compound eye of the desert ant, Cataglyphis bicolor. Serial cross-sections through the retina were taken and the orientation of the microvilli was determined in the photoreceptors of individually identified ommatidia. The reconstructions of microvillar alignment were made in the three anatomically and functionally distinct regions of the Cataglyphis compound eye: the dorsal rim area (DRA), the dorsal area (DA), and the ventral area (VA). The following morphological findings are consistent with polarization sensitivities measured previously by intracellular recordings. (1) The microvilli of the DRA photoreceptors are aligned in parallel along the entire length of the cell from the distal tip of the rhabdom down to its proximal end, near the basement membrane. The microvilli of the retinular cells R1 and R5 are always parallel to each other and perfectly perpendicular, with only minor deviation, to the microvillar orientation of the remaining receptor cells. (2) In the DA and VA regions of the eye, the microvillar tufts of the small receptors R1, R3, R5, R7, and R9 change their direction repetitively every 1-4 7m for up to 90°. In contrast, the large receptor cells R2, R4, R6, and R8 maintain their microvillar orientation rigidly. (3) In the DRA ommatidia, the cross-sectional areas of the rhabdomeres do not change along the length of the rhabdom, but substantial changes occur in the DA and VA ommatidia.  相似文献   

9.
Abstract The compound (apposition) eyes of Tanais cavolinii are not well developed: the number of ommatidia is small and there are certain irregularities in structure. The refractive components are formed by the cornea and the cone. The latter is built up by two cone cells. In addition, there are two accessory cone cells confined to the distal part of the cone. The eight pigmented retinular cells extend from the cornea to the basement membrane. Proximal to the cone, they form a fused continuous rhabdom, which in cross section has a rectangular outline. In the middle part of the rhabdom, the microvilli are arranged perpendicular to the long axis of the rhabdom when seen in cross section. The microvilli outside of this area can be arranged either parallel or perpendicular to the microvilli of the middle part. Other irregularities occur in the ommatidium, e.g. the position of the retinular cell nuclei, which are found at different levels. Extensions from the cone cells fuse and form a mesh proximal to the rhabdom. Between the mesh and basal lamina is a basal cell type enveloping the proximal parts of the retinular cells and their axons. These cells also form the basal lamina, which delimits the compound eye from the haemocoel. No special pigment cells are present in the compound eye of Tanais cavolinii.  相似文献   

10.
We examined the fine structure of dorsal rim ommatidia of the compound eye of Pararge aegeria (Lepidoptera: Satyridae) and compared them with ommatidia of the large dorsal region described by Riesenberg (1983 Diploma, University of Munich). 1. The ommatidia of the dorsal rim show morphological specializations known to be typical of the perception of polarized light: (a) the dumb-bell-shaped rhabdoms contain linearly aligned rhabdomeres with only 2 orthogonally arranged microvilli orientations. The rhabdoms are composed of the rhabdomeres of 9 receptor cells, 8 of which are radially arranged. The rhabdomeres of receptor cells VI and V5, as well as D2, D4, D6 and D8 are dorsoventrally aligned, whereas the rhabdomeres of the cells H3 and H7 are perpendicular to them. The rhabdomere of the bilobed 9th retinula cell lies basally and is dorsoventrally aligned, where retinula cell VI and V5 are already axonal. (b) There is no rhabdomeric twist, and (c) the rhabdoms are rather short. 2. However, in the ommatidia of the large dorsal region, only 2 retinula cells (H3 and H7) are suitable for perception of polarized light. 3. Lucifer yellow and horse radish peroxidase were used as tracers to visualize the projections of retinula cell axons of the dorsal rim area and the large dorsal region into the optic neuropils (lamina and medulla). Two receptors (VI and V5) from both the dorsal rim area and the large dorsal region, have long visual fibres projecting into the medulla. The 7 remaining retinula cells of both eye regions, including those that meet the structural requirements for detection of polarized light in the large dorsal region, terminate in the lamina (short visual fibres). These results provide a starting point for further studies to reveal the possible neuronal pathways by which polarized light may be processed.  相似文献   

11.
The structural organization of the compound eye of the largest known isopod, Bathynomus giganteus, is described from four specimens maintained in the laboratory for as long as two months. Living specimens have not previously been available for study. The two triangular compound eyes measure about 18 mm on the dorsal edge and are separated by an interocular distance of 25 mm. They face forward and slightly downward and may have significant overlap in visual fields. Each eye contains about 3,500 ommatidia in animals of body lengths from 22.5 cm to 37.5 cm. The packing of ommatidia is not uniform across the retina, but is nearly hexagonal in the dorsal central region and nearly square in the ventral and lateral periphery. The dioptric elements in each ommatidium consist of a laminar cornea, which is flat externally and convex internally, and a bipartite crystalline cone. Sometimes seven and sometimes eight retinular cells closely appose the proximal tip of the cone and bear the microvilli of the rhabdom. Proximal to the rhabdom the retinular cells form thin pillars near the periphery of the ommatidium, and the central portion along the optic axis at this level is occupied by interstitial cells that contain massive arrays of clear vesicles thought to serve as reflective elements. The arhabdomeral segments of the retinular cells and the interstitial cells rest on a basement membrane. Within each ommatidium the basement membrane has two extensions with cylindrical cores and thin sheets of dense material and collagen-like filaments. These sheets occupy spaces between adjacent interstitial cells up to the level of the rhabdomeral segments of the retinular cells. Arrays of pigment cells with relatively weak light-screening properties separate adjacent ommatidia. Animals were fixed both in light within a week of being brought from depth into daylight, and after 2 months of maintenance in constant darkness following such daylight exposure. In both cases, microvilli of the rhabdom were severely disrupted and the retinular cytoplasm contained numerous multivesicular bodies. Exposure to natural daylight appears to cause irreversible structural damage to the photoreceptors of these animals.  相似文献   

12.
Ommatidia of the eucon compound eye of Adoxophyes reticulana (Lepidoptera : Tortricidae) were investigated elect ronmicroscopically. The dorsofrontal part and the dorsal rim region were examined in serial sections. Seven radially arranged retinula cells RC1−7 form the rhabdom from distal to proximal region (Fig. 1). The 8th retinula cell RC8 joins the first 7 at their bases; this cell enlarges proximally (Fig. 1C, D). In the dorsofrontal region, 2 types of rhabdoms are distinguished; Type II (Figs. 1B2;3b) outnumbers Type I (Figs. 1B1;3a by a ratio of 4 : l. In the dorsal rim area, the first 2 rows are occupied exclusively by Type 11-rhabdoms; beyond this, the rhabdom of the dorsal rim area is characterized by the fact that its middle and proximal parts are considerably larger in diameter than in the dorsofrontal part; in this region, the microvilli of the horizontally oriented rhabdomeres are also parallel to the ;,-axis of the eye (Figs. 1B3;3d). Thus, this small eye region meets the structural requirements for the detection of polarized light. The eye is interpreted as an intermediate between apposition and superposition eyes, because the rhabdom begins at the tip of the crystalline tract and the retinula cells are pigmented like those of an apposition eye. On the other hand, the structure of the dioptric apparatus and the tracheal system corresponds to those of superposition eyes. Parallels with the Ephestia eye in basic structural features are discussed in regard to the possible function of this eye and to the systematic position of A. reticulana.  相似文献   

13.
The eyes of galatheid squat lobsters (Munida rugosa) are shown to be of the reflecting superposition type. In the dark-adapted state corneal lenses focus light at the level of the rhabdoms and light from more than 1000 facets is redirected to the superposition focus by the reflecting surfaces of the crystalline cones. When the eye is light adapted, apposition optics are used. In this state paraxial light is focused by the corneal lens and the parabolic proximal end of the cone onto the distal end of a rhabdomeric lightguide. The latter transmits light across the clear zone to the rhabdom layer. In the dorsal part of the eye the individual ommatidia become progressively shorter until the cones and rhabdoms are no longer separated by a clear zone. Although formerly considered to be developing ommatidia, they are shown to be retained specifically for scanning the downwelling irradiance.Abbreviations RI refractive index - SEM scanning electron microscope  相似文献   

14.
The compound eyes of the wingless adults of the Madagascar ‘hissing cockroach’Gromphadorhina portentosa Sachum, 1853 were examined by light and electron microscopy. Each eye contains 2 400‐2 500 mostly hexagonal facets. However, irregularities affecting both shape and size of the ommatidia are relatively common, especially towards the margins of the eye. An individual ommatidium of this eucone type of apposition eye contains eight retinula cells, which give rise to a centrally‐fused, tiered rhabdom. The distal end of the latter is funnel‐shaped and accommodates the proximal end of the cone in its midst. Further below, the rhabdom (then formed by the rhabdomeres of four retinula cells) assumes a squarish profile with microvilli aligned in two directions at right‐angle to each other. Cross sections through the proximal regions of the rhabdom display triangular rhabdom outlines and microvilli (belonging to 3‐4 retinula cells different from those involved in the squarish more distal rhabdom) that run in three directions inclined to one another by 120°. Overall the organization of the eye conforms to the orthopteroid pattern and particularly closely resembles that of the American cockroach Periplaneta americana. However, since G. portentosa possesses fewer ommatidia, this could be a consequence of its inability to fly. On the other hand, the large size of the facets and the voluminous rhabdoms suggest considerable absolute sensitivity and an ability to detect the plane of linearly polarized light. Based on the pattern of microvillus orientations in combination with the crepuscular lifestyle G. portentosa leads and the habitat it occurs in, the prediction is made that this insect uses its green receptors for e‐vector discrimination in the environment of down‐welling light that reaches the forest floor.  相似文献   

15.
Electron microscopic investigations on the eye of the worker bee showed that the ommatidia located in the uppermost part of the dorsal half of the eye are characterized by a distinct structural specialization: Nine visual cells contribute microvilli to the rhabdom over its full length. Within these rhabdoms the microvilli are arranged in at least three different directions. This specialization affects an area of at least 60 ommatidia. The most dorsal eye region differs, therefore, structurally from all other regions which have been investigated to date. Because the ommatidia in question are oriented skyward, their peculiar structure is discussed with respect to several concepts of polarized light detection by the bee.  相似文献   

16.
Summary Long-term light deprivation of the royal pair of Neotermes jouteli during the phase of reproduction leads to a dramatic change in the organization within the compound eye. In a swarming alate, investigated with scanning and transmission electron microscopy, the eye consists of about 200 ommatidia. No differences between male and female eyes are observed. Each ommatidium is composed of a biconvex cornea, a cone of the eucone type, and a rhabdom which is located directly beneath the Semper cells. The rhabdom consists of eight rhabdomeres which are fused along the ommatidial axis. In the central part of the compound eye the rhabdom measures roughly 20 m in length. Concealed life of the imagines causes a dismantling of the cone and the rhabdom until complete destruction. This is accompanied by an increase in the number of pigment granules and a decrease in the number of mitochondria.  相似文献   

17.
Summary The fine structure of the superposition eye of the Saturniid moth Antheraea polyphemus Cramer was investigated by electron microscopy. Each of the approximately 10000 ommatidia consists of the same structural components, but regarding the arrangement of the ommatidia and the rhabdom structure therein, two regions of the eye have to be distinguished. In a small dorsal rim area, the ommatidia are characterized by rectangularly shaped rhabdoms containing parallel microvilli arranged in groups that are oriented perpendicular to each other. In all other ommatidia, the proximal parts of the rhabdoms show radially arranged microvilli, whereas the distal parts may reveal different patterns, frequently with microvilli in two directions or sometimes even in one direction. Moreover, the microvilli of all distal cells are arranged in parallel to meridians of the eyes. By virtue of these structural features the eyes should enable this moth not only discrimination of the plane of polarized light but also skylight-orientation via the polarization pattern, depending on moon position. The receptor cells exhibit only small alterations during daylight within the natural diurnal cycle. However, under illumination with different monochromatic lights of physiological intensity, receptor cells can be unbalanced: Changes in ultrastructure of the rhabdomeres and the cytoplasm of such cells are evident. The effects are different in the daytime and at night. These findings are discussed in relation to the breakdown and regeneration of microvilli and the influence of the diurnal cycle. They are compared with results on photoreceptor membrane turnover in eyes of other arthropod species.  相似文献   

18.
陈庆霄 《昆虫学报》2020,63(1):11-21
【目的】重叠型眼在昆虫复眼演化中起着重要作用。本研究旨在阐明夜出型亲土苔蛾Manulea affineola复眼类型及结构特征,以期填补灯蛾亚科昆虫复眼研究的空白,扩充夜出型昆虫复眼的特征数据,为探讨重叠型眼的变异趋势及复眼演化提供依据。【方法】运用光学和透射电子显微技术观察亲土苔蛾成虫复眼的超微结构。【结果】亲土苔蛾成虫复眼具有一个透明区,由6个次级色素细胞的透明胞质构成。小眼具8个视网膜细胞,其中1个视网膜细胞较短,仅位于小眼基部。在透明区内,7个视网膜细胞聚集成一束,其远端与晶体束末端相接,但并不形成视杆。在透明区下方,这7个视网膜细胞形成一个中心融合的视杆。在复眼背缘区的小眼的视杆具有近似矩形的横截面,而其余小眼的视杆具多分支状截面。【结论】亲土苔蛾成虫复眼属于重叠型眼;复眼背缘区的矩形视杆很可能与昆虫的偏振敏感性有关。  相似文献   

19.
Abstract The stemmata of last–instar Nannochoristalarvae are compound eyes composed of 10 or more ommatidia. Each ommatidium has four Semper cells, four distal and four proximal retinula cells which form a cruciform and layered rhabdom. The ommatidia are separated by epidermal cells (possibly rudimentary pigment cells). Corneal lenses are lacking. At the posterior edge, aberrant stemma units may be present which lack a dioptric apparatus and have a star–shaped rhabdom composed of at least six retinula cells. The stemmata of Nannochoristaappear to be derived from stemmata of the Panorpa-type (Mecoptera-Panorpidae). Differences between the stemmata of Nannochoristaand Panorpacan be explained as adaptations to aquatic life (flat cornea) or as regression. A compound larval eye is ascribed to the ground plan of the Mecoptera sensu latoand is considered a genuine plesiomorphy. The identical basic number (seven) of stemmata in the Neuropteroid/Coleoptera assemblage, Amphiesmenoptera and some Mecoptera (Bittacidae, Boreidae) is attributed to parallel evolution.  相似文献   

20.
粘虫蛾复眼背、腹区视杆结构的差异   总被引:3,自引:1,他引:2  
郭炳群 《昆虫学报》1984,(2):147-151
根据光学和电子显微镜的观察,粘虫蛾复眼背、腹区域的视杆结构具有以下主要差异:1)背方小眼视杆的长度短于腹方小眼视杆的长度。2)在横切面上,背方小眼视杆的中段近似方形。该段间细胞的视小杆为三角形,每个具有平行排列的微绒毛。整个视杆包含两个互相垂直的微绒毛轴。腹方小眼视杆的中段为风扇形。间细胞的视小杆为“V”字形,微绒毛排列不平行。3)背方小眼基细胞的视小杆几乎位于气管反光层远侧,而腹方小眼甚至延伸到气管反光层内。 在背方和腹方小眼视杆的内段,每个间细胞的微绒毛均平行,且排列在基细胞的大形视小杆周围。更深层,在其它细胞的轴突均已相继出现的水平上,基细胞的大形视小杆仍然可见。 最后,对形态上的特点,在功能上可能具有的一些意义也进行了初步讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号