首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium (Se) can protect endothelial cells (EC) from oxidative damage by altering the expression of selenoproteins with antioxidant function such as cytoplasmic glutathione peroxidase (cyGPX), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and thioredoxin reductase (TR). If the role of Se on EC function is to be studied, it is essential that a model system be chosen which reflects selenoprotein expression in human EC derived from vessels prone to developing atheroma. We have used [75Se]-selenite labelling and selenoenzyme measurements to compare the selenoproteins expressed by cultures of EC isolated from different human vasculature with EC bovine and porcine aorta. Only small differences were observed in selenoprotein expression and activity in EC originating from human coronary artery, human umbilical vein (HUVEC), human umbilical artery and the human EC line EAhy926. The selenoprotein profile in HUVEC was consistent over eight passages and HUVEC isolated from four cords also showed little variability. In contrast, EC isolated from pig and bovine aorta showed marked differences in selenoprotein expression when compared to human cells. This study firmly establishes the suitability and consistency of using HUVEC (and possibly the human cell line EAhy926) as a model to study the effects of Se on EC function in relation to atheroma development in the coronary artery. Bovine or porcine EC appear to be an inappropriate model.  相似文献   

2.
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.  相似文献   

3.
Acrolein, a reactive aldehyde found in cigarette smoke, is thought to induce its biological effects primarily by irreversible adduction to cellular nucleophiles such as cysteine thiols. Here, we demonstrate that acrolein rapidly inactivates the seleno-enzyme thioredoxin reductase (TrxR) in human bronchiolar epithelial HBE1 cells, which recovered over 4–8 h by a mechanism depending on the presence of cellular GSH and thioredoxin 1 (Trx1), and corresponding with reversal of protein–acrolein adduction. Our findings indicate that acrolein-induced protein alkylation is not necessarily a feature of irreversible protein damage, but may reflect a reversible signaling mechanism that is regulated by GSH and Trx1.  相似文献   

4.
5.
Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde, the levels of which are increased in the blood of smokers. To determine if acrolein is involved in the pathology of smoke angiopathy, the effect of acrolein on human umbilical vein endothelial cells (HUVEC) was examined. Intracellular nitric oxide (NO) levels, determined using diaminofluorescein-2 diacetate (DAF-2 DA), an NO sensitive fluorescent dye, were found to be increased after treatment in HUVEC with 10 microM acrolein. The measurement of nitrite with 2,3-diaminonaphthalene and a Western blot analysis revealed that nitrite and S-nitroso-cysteine levels were increased in a dose-dependent manner, confirming that NO production is increased by acrolein. The increase was not reduced by treatment with 10mM N-acetyl-l-cysteine (NAC), an anti-oxidant, but was reduced with 10 microM of the intracellular calcium chelator, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester. Acrolein-stimulated NO production was significantly reduced by pretreatment with 1mM N(G)-nitro-l-arginine-methyl ester (L-NAME), an NO synthase inhibitor. The cytotoxicity of acrolein was reduced by pretreatment with 10 microM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO), an intracellular NO scavenger, or 1mM L-NAME, whereas it was not reduced by 10mM NAC, 20 microM Curcumin, another peroxide scavenger, or 100 microM Mn(III)TMPyP, a superoxide dismutase mimic. Nuclear staining and a Western blot analysis using an anti-cleaved caspase 3 antibody revealed that the reduced viability of HUVEC by acrolein was due to apoptosis, which was reversed after pretreatment with 0.1mM carboxy-PTIO or 1mM L-NAME. Thus, acrolein increases intracellular calcium production to induce intracellular NO production by a calcium-dependent NO synthase, possibly eNOS, and the excess and rapid increase in NO might lead to the apoptosis of HUVEC. These data suggest that acrolein might be involved in the pathology of smoke angiopathy through the NO-induced apoptosis of endothelial cells.  相似文献   

6.
7.
Protein-Bound Acrolein   总被引:14,自引:1,他引:13  
Abstract : Several lines of evidence support the role of oxidative stress, including increased lipid peroxidation, in the pathogenesis of Alzheimer's disease (AD). Lipid peroxidation generates various reactive aldehydes, such as 4-hydroxynonenal (HNE), which have been detected immunochemically in AD, particularly in neurofibrillary tangels, one of the major diagnostic lesions in AD brains. A recent study demonstrated that acrolein, the most reactive among the α, β-unsaturated aldehyde products of lipid peroxidation, could be rapidly incorporated into proteins, generating a carbonyl derivative, a marker of oxidative stress to proteins. The current studies used an antibody raised against acrolein-modified keyhole limpet hemocyanin (KLH) to test whether acrolein modification of proteins occurs in AD. Double immunofluorescence revealed strong acrolein-KLH immunoreactivity in more than half of all paired helical filament (PHF)-1-labeled neurofibrillary tangles in AD cases. Acrolein-KLH immunoreactivity was also evident in a few neurons lacking PHF-1-positive neurofibrillary tangles. Light acrolein-KLH immunoreactivity occurred in dystrophic neurites surrounding the amyloid-β core, which itself lacked acrolein-KLH staining. The pattern of acrolein-KLH immunostaining was similar to that of HNE. Control brains did not contain any acrolein-KLH-immunoreactive structures. The current results suggest that protein-bound acrolein is a powerful marker of oxidative damage to protein and support the hypothesis that lipid peroxidation and oxidative damage to protein may play a crucial role in the formation of neurofibrillary tangles and to neuronal death in AD.  相似文献   

8.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

9.
Trichomonas is an amitochondriate parasitic protozoon specialized for an anaerobic lifestyle. Nevertheless, it is exposed to oxygen and is able to cope with the resultant oxidative stress. In the absence of glutathione, cysteine has been thought to be the major antioxidant. We now report that the parasite contains thioredoxin reductase, which functions together with thioredoxin and thioredoxin peroxidase to detoxify potentially damaging oxidants. Thioredoxin reductase and thioredoxin also reduce cystine and so may play a role in maintaining the cellular cysteine levels. The importance of the thioredoxin system as one of the major antioxidant defense mechanisms in Trichomonas was confirmed by showing that the parasite responds to environmental changes resulting in increased oxidative stress by up-regulating thioredoxin and thioredoxin peroxidases levels. Sequence data indicate that the thioredoxin reductase of Trichomonas differs fundamentally in structure from that of its human host and thus may represent a useful drug target. The protein is generally similar to thioredoxin reductases present in other lower eukaryotes, all of which probably originated through horizontal gene transfer from a prokaryote. The phylogenetic signal in thioredoxin peroxidase is weak, but evidence from trees suggests that this gene has been subject to repeated horizontal gene transfers from different prokaryotes to different eukaryotes. The data are thus consistent with the complexity hypothesis that predicts that the evolution of simple pathways such as the thioredoxin cascade are likely to be affected by horizontal gene transfer between species.  相似文献   

10.
11.
12.
alpha-Lipoic acid (LA) has been widely studied as an agent for preventing and treating various diseases associated with oxidative disruption of mitochondrial functions. To investigate a related mitochondrial antioxidant, we compared the effects of lipoamide (LM), the neutral amide of LA, with LA for measures of oxidative damage and mitochondrial dysfunction in a human retinal pigment epithelial (RPE) cell line. Acrolein, a major component of cigarette smoke and a product of lipid peroxidation, was used to induce oxidative mitochondrial damage in RPE cells. Overall, using comparable concentrations, LM was more effective than LA at preventing acrolein-induced mitochondrial dysfunction and oxidative stress. Relative to LA, LM improved ATP levels, membrane potentials, and activities of mitochondrial complexes I, II, and V and dehydrogenases that had been decreased by acrolein exposure. LM reduced acrolein-induced oxidant generation, calcium levels, protein oxidation, and DNA damage to a greater degree than LA. And, total antioxidant capacity, glutathione content, glutathione S-transferase, and superoxide dismutase activities and expression of nuclear factor-E2-related factor 2 were increased by LM relative to LA. These results suggest that LM is a more potent mitochondrial-protective agent and antioxidant than LA in protecting RPE from oxidative damage.  相似文献   

13.
《Free radical research》2013,47(7):888-895
Abstract

Myelin is a critical component of the nervous system facilitating efficient propagation of electrical signals and thus communication between the central and peripheral nervous systems and the organ systems that they innervate throughout the body. In instances of neurotrauma and neurodegenerative disease, injury to myelin is a prominent pathological feature responsible for conduction deficits, and leaves axons vulnerable to damage from noxious compounds. Although the pathological mechanisms underlying myelin loss have yet to be fully characterized, oxidative stress (OS) appears to play a prominent role. Specifically, acrolein, a neurotoxic aldehyde that is both a product and an instigator of OS, has been observed in studies to elicit demyelination through calcium-independent and -dependent mechanisms and also by affecting glutamate uptake and promoting excitotoxicity. Furthermore, pharmacological scavenging of acrolein has demonstrated a neuroprotective effect in animal disease models, by conserving myelin's structural integrity and alleviating functional deficits. This evidence indicates that acrolein may be a key culprit of myelin damage while acrolein scavenging could potentially be a promising therapeutic approach for patients suffering from nervous system trauma and disease.  相似文献   

14.
A major fraction of the essential trace element selenium circulating in human blood plasma is present as selenoprotein P (SeP). As SeP associates with endothelial membranes, the participation of SeP in selenium-mediated protection against oxidative damage was investigated, using the human endothelial cell line Ea.hy926 as a model system. Hepatocyte-derived SeP prevented tert-butylhydroperoxide (t-BHP)-induced oxidative cell death of Ea.hy926 cells in a similar manner as did sodium selenite, counteracting a t-BHP-induced loss of cellular membrane integrity. Protection was detected after at least 10 h of SeP supplementation and it peaked at 24 h. SeP time-dependently stimulated the expression of cytosolic glutathione peroxidase (cGPx) and increased the enzymatic activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR). The cGPx inhibitor mercaptosuccinate as well as the γ-glutamylcysteine synthetase inhibitor buthionine sulfoximine counteracted the SeP-mediated protection, while the TR inhibitors cisplatin and auranofin had no effect. The presented data suggest that selenium supplementation by SeP prevents oxidative damage of human endothelial cells by restoring expression and enzymatic activity of GPx.  相似文献   

15.
16.
Redox and antioxidant systems of the malaria parasite Plasmodium falciparum   总被引:4,自引:0,他引:4  
The malaria parasite Plasmodium falciparum is highly adapted to cope with the oxidative stress to which it is exposed during the erythrocytic stages of its life cycle. This includes the defence against oxidative insults arising from the parasite's metabolism of haemoglobin which results in the formation of reactive oxygen species and the release of toxic ferriprotoporphyrin IX. Central to the parasite's defences are superoxide dismutases and thioredoxin-dependent peroxidases; however, they lack catalase and glutathione peroxidases. The vital importance of the thioredoxin redox cycle (comprising NADPH, thioredoxin reductase and thioredoxin) is emphasized by the confirmation that thioredoxin reductase is essential for the survival of intraerythrocytic P. falciparum. The parasites also contain a fully functional glutathione redox system and the low-molecular-weight thiol glutathione is not only an important intracellular thiol redox buffer but also a cofactor for several redox active enzymes such as glutathione S-transferase and glutaredoxin. Recent findings have shown that in addition to these cytosolic redox systems the parasite also has an important mitochondrial antioxidant defence system and it is suggested that lipoic acid plays a pivotal part in defending the organelle from oxidative damage.  相似文献   

17.
The thioredoxin/thioredoxin reductase system is strongly induced in patients with rheumatoid arthritis (RA). We have investigated the impact on TR activity of doses of superoxide anion generated by the hypoxanthine (HX)/xanthine oxidase (XO) system and by hydrogen peroxide, H(2)O(2), for various times and compared the findings with synoviocytes obtained from osteoarthritis (OA) patients. At baseline, TR activity in RA cells was significantly higher than in OA cells (2.31 +/- 0.65 versus 0.74 +/- 0.43 mUnit/mg protein, p < 0.01). HX/XO and H(2)O(2) in RA cells decreased TR activity, which was found to be unchanged in OA cells. H(2)O(2) and superoxide anion caused a time-dependent accumulation of oxidized TR and induced the formation of carbonyl groups in TR protein in RA cells rather than OA cells, and oxidized the selenocysteine of the active site. The oxidation in TR protein was irreversible in RA cells but not in OA cells. In conclusion, we report that the oxidative aggression generates modifications in the redox status of the active site of the TR and induces an alteration of the Trx/TR system, concomitant with those of the other antioxidant systems that could explain the causes of oxidative stress related to RA disease.  相似文献   

18.
Lipoic acid (LA) is a widely used antioxidant that protects mitochondria from oxidative damage in vivo. Much of this protection is thought to be due to the reduction of LA to dihydrolipoic acid (LAH(2)). This reduction is catalyzed in vivo by thioredoxin, thioredoxin reductase (TrxR), and lipoamide dehydrogenase. We hypothesized that specifically targeting LA to mitochondria, the site of most cellular reactive oxygen species production, would make it a more effective antioxidant. To do this, we made a novel molecule, MitoLipoic acid, by attaching lipoic acid to the lipophilic triphenylphosphonium cation. MitoL was accumulated rapidly within mitochondria several-hundred fold driven by the membrane potential. MitoL was reduced to the active antioxidant dihydroMitoLipoic acid by thioredoxin and by lipoamide dehydrogenase but not by TrxR. In isolated mitochondria or cells MitoL was only slightly reduced (5-10%), while, in contrast, LA was extensively reduced. This difference was largely due to the reaction of LA with TrxR, which did not occur for MitoL. Furthermore, in cells MitoL was quantitatively converted to an S-methylated product. As a consequence of its lack of reduction, MitoL was not protective for mitochondria or cells against a range of oxidative stresses. These results suggest that the protective action of LA in vivo may require its reduction to LAH(2) and that this reduction is largely mediated by TrxR.  相似文献   

19.
The selenoprotein thioredoxin reductase (TrxR1) is an essential antioxidant enzyme known to reduce many compounds in addition to thioredoxin, its principle protein substrate. Here we found that TrxR1 reduced ubiquinone-10 and thereby regenerated the antioxidant ubiquinol-10 (Q10), which is important for protection against lipid and protein peroxidation. The reduction was time- and dose-dependent, with an apparent K(m) of 22 microm and a maximal rate of about 12 nmol of reduced Q10 per milligram of TrxR1 per minute. TrxR1 reduced ubiquinone maximally at a physiological pH of 7.5 at similar rates using either NADPH or NADH as cofactors. The reduction of Q10 by mammalian TrxR1 was selenium dependent as revealed by comparison with Escherichia coli TrxR or selenium-deprived mutant and truncated mammalian TrxR forms. In addition, the rate of reduction of ubiquinone was significantly higher in homogenates from human embryo kidney 293 cells stably overexpressing thioredoxin reductase and was induced along with increasing cytosolic TrxR activity after the addition of selenite to the culture medium. These data demonstrate that the selenoenzyme thioredoxin reductase is an important selenium-dependent ubiquinone reductase and can explain how selenium and ubiquinone, by a combined action, may protect the cell from oxidative damage.  相似文献   

20.
The thioredoxin (Trx) and thioredoxin reductase (TR) of Mycobacterium tuberculosis have been expressed in Escherichia coli and shown to reduce peroxides and dinitrobenzenes. The reduction of H2O2 requires both Trx and TR and is more efficient under anaerobic than aerobic conditions. In contrast, cumene hydroperoxide is reduced to cumyl alcohol and acetophenone in a process that requires NADPH and TR but not Trx. Cumene hydroperoxide reduction is partially inhibited by chelation of trace metals in the medium. The reduction of cumene hydroperoxide by TR is more effective under anaerobic than aerobic conditions due to a competing oxidase reaction in which electrons are transferred from TR to O2. Under anaerobic conditions, dinitrobenzenes also serve as electron acceptors and are reduced by TR to nitroanilines, but the enzyme does not reduce mononitrobenzenes or mononitroimidazoles such as metronidazole. The reductive activity of the Trx-TR system may modify the antioxidant defenses of M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号