首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Difference between effects of sulfur dioxide (SO2) and ozone (O3) on groundnut plants (Arachis hypogaea L.) was studied by use of an exposure system of enzymatically-isolated mesophyll cells. SO2 inhibited photosynthesis of intact groundnut leaves but induced no visible injury on leaves. SO2 also inhibited photosynthesis of isolated mesophyll cells but did not kill the cells, suggesting that SO2 inhibits photosynthesis by attacking rather specifically the photosynthetic apparatus in chloroplasts. O3 inhibited photosynthesis of intact leaves and at the same time induced visible injury corresponding to the extent of photosynthesis inhibition. O3 also inhibited photosynthesis of isolated mesophyll cells and killed the cells to the extent corresponding to photosynthesis inhibition, suggesting that O3 inhibits photosynthesis not directly by attacking the photosynthetic apparatus but indirectly by killing cells. Since the response of intact leaves to each pollutant resembled that of isolated mesophyll cells, the difference between responses of intact leaves to both pollutants may considerably reflect that of mesophyll cells.  相似文献   

2.
To obtain the basic data for evaluating the critical level of ozone (O3) to protect Japanese deciduous broad-leaved forest tree species, the growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen (N) loads were investigated. The seedlings were grown in potted andisol supplied with N as NH4NO3 solution at 0, 20 or 50 kg ha−1 year−1 and were exposed to charcoal-filtered air or O3 at 1.0, 1.5 and 2.0 times the ambient concentration for two growing seasons. The interactive effect of O3 and N load on the whole-plant dry mass of the seedlings at the end of the second growing season was significant. The O3-induced reduction in the whole-plant dry mass of the seedlings was greater in the relatively high N treatment than that in the low N treatment. This interactive effect was mainly due to the difference in the degree of O3-induced reduction in net photosynthesis among the N treatments. The degree of O3-induced reduction in N availability to photosynthesis was greater in the relatively high N treatment than that in the low N treatment. In conclusion, the sensitivity of growth and photosynthetic parameters of F. crenata seedlings to O3 become high with increasing amounts of N added to the soil. Therefore, N deposition from the atmosphere should be taken into account to evaluate the critical level of O3 to protect Japanese deciduous broad-leaved forest tree species.  相似文献   

3.
A few species of Cymbopogon and Vetiveria are potentially important tropical grasses producing essential oils. In the present study, we report on the leaf anatomy and photosynthetic carbon assimilation in five species of Cymbopogon and Vetiveria zizanioides. Kranz-type leaf anatomy with a centrifugal distribution of chloroplasts and exclusive localization of starch in the bundle sheath cells were common among the test plants. Besides the Kranz leaf anatomy, these grasses displayed other typical C4 characteristics including a low (0–5 µl/l) CO2 compensation point, lack of light saturation of CO2 uptake at high photon flux densities, high temperature (35°C) optimum of net photosynthesis, high rates of net photosynthesis (55–67 mg CO2 dm-2 leaf area h-1), little or no response of net photosynthesis to atmospheric levels of O2 and high leaf 13C/12C ratios. The biochemical studies with 14CO2 indicated that the leaves of the above plant species synthesize predominantly malate during short term (5 s) photosynthesis. In pulse-chase experiments it was shown that the synthesis of 3-phosphoglycerate proceeds at the expense of malate, the major first formed product of photosynthesis in these plant species.  相似文献   

4.
二氧化硫是大气主要污染物之一,可对植物的关键生理过程光合作用产生重要影响。利用密闭环境控制室熏气处理,研究不同浓度(自然状态下浓度、0.5mg·L-1、1.5mg·L-1、3.0mg·L-1)SO2对盆栽巨桉和天竺桂幼树叶绿素含量、光响应曲线、光合特征参数、光合日变化及硫含量的影响。结果表明:(1)SO2胁迫显著减少了巨桉叶绿素a、b含量,且叶绿素a/b值显著降低,而天竺桂在SO2胁迫下叶绿素a、b含量显著增加,叶绿素a/b值无显著影响。(2)SO2胁迫显著抑制了两树种的净光合速率(Pn);在SO2胁迫下巨桉气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)显著上升,而天竺桂的Gs和Tr显著被SO2抑制,Ci随SO2浓度的增加先升高后降低。(3)巨桉表观量子效率(AQY)、暗呼吸速率(Rd)、光补偿点(LCP)和光饱和点(LSP)及天竺桂Rd和LCP均随着SO2浓度的增加而先升高后降低,而天竺桂的AQY和LSP逐渐降低。(4)一天中,SO2胁迫显著提高了巨桉Pn、Gs和Tr,而对天竺桂Pn无显著影响,较低浓度SO2胁迫显著促进了天竺桂Gs和Tr,高浓度SO2胁迫则显著抑制其Gs和Tr;SO2胁迫显著抑制了两种植物的Ci。(5)SO2胁迫下,巨桉和天竺桂幼树叶片硫含量均显著增加。研究认为,巨桉对较低浓度的SO2胁迫有一定的适应能力,但对高浓度SO2胁迫的抗性不如天竺桂强,这可能与二者不同的叶片形态及生理特性有关。  相似文献   

5.
The effects of nutrients on the photosynthetic recovery of Nostoc flagelliforme during re-hydration were investigated in order to see if their addition was necessary. Net photosynthesis was negligible in distilled water without nutrient-enrichment. Addition of K+ resulted in significant enhancement of net photosynthesis, whereas other nutrients (Fe3+, Mg2+, Na+, NO3 -, PO4 3-, Cl-) and trace-metals (A5) showed little effect. The recovered net photosynthetic activity increased with the increased K+, and reached the maximum at concentrations above 230 μM. Desiccation and re-hydration did not affect the dependence of photosynthetic recovery on K+. It was concluded that dried field populations of N. flagelliforme require exogenous addition of potassium for photosynthetic recovery and that growth may be potassium-limited in nature. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Photosynthetic Responses of Tropical Trees to Short-Term Exposure to Ozone   总被引:1,自引:0,他引:1  
Moraes  R.M.  Furlan  C.M.  Bulbovas  P.  Domingos  M.  Meirelles  S.T.  Salatino  A.  Delitti  W.B.C.  Sanz  M.J. 《Photosynthetica》2004,42(2):291-293
Saplings of the tropical trees Tibouchina pulchra (Cham.) Cogn., Caesalpinia echinata Lam., and Psidium guajava L. cv. Paluma were exposed in open-top chambers with charcoal filtered air and measurements of gas exchange and chlorophyll fluorescence were made before (t1) and after exposure to non-filtered air plus O3 (t2), simulating 6-h peaks of O3 similar to those observed in São Paulo city (SE Brazil, reaching an AOT40 of 641 nmol mol–1). After the fumigation, the net photosynthetic rate, stomatal conductance, transpiration rate, and Fv/Fm were reduced (p<0.05) for the three species. C. echinata was the most sensitive species and P. guajava cv. Paluma the most resistant.  相似文献   

7.
Effect of phosphorus deficiency on photosynthetic and respiratory CO2 exchanges were analysed in primary leaves of 2-week-old bean (Phaseolus vulgaris L. cv. Golden Saxa) plants under non-photorespiratory (2 % O2) and photorespiratory (21 % O2) conditions. Low P decreased maximum net photosynthetic rate (PNmax) and increased the time necessary to reach it. In the leaves of P-deficient plants the relative decrease of PNmax at 2 % O2 was larger than at 21 % O2. The results suggested the influence of photorespiration in the cellular turnover of phosphates.  相似文献   

8.
A biochemical model of C 3photosynthesis has been developed by G.D. Farquhar et al. (1980, Planta 149, 78–90) based on Michaelis-Menten kinetics of ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase, with a potential RuBP limitation imposed via the Calvin cycle and rates of electron transport. The model presented here is slightly modified so that parameters may be estimated from whole-leaf gas-exchange measurements. Carbon-dioxide response curves of net photosynthesis obtained using soybean plants (Glycine max (L.) Merr.) at four partial pressures of oxygen and five leaf temperatures are presented, and a method for estimating the kinetic parameters of RuBP carboxylase-oxygenase, as manifested in vivo, is discussed. The kinetic parameters so obtained compare well with kinetic parameters obtained in vitro, and the model fits to the measured data give r 2values ranging from 0.87 to 0.98. In addition, equations developed by J.D. Tenhunen et al. (1976, Oecologia 26, 89–100, 101–109) to describe the light and temperature responses of measured CO2-saturated photosynthetic rates are applied to data collected on soybean. Combining these equations with those describing the kinetics of RuBP carboxylase-oxygenase allows one to model successfully the interactive effects of incident irradiance, leaf temperature, CO2 and O2 on whole-leaf photosynthesis. This analytical model may become a useful tool for plant ecologists interested in comparing photosynthetic responses of different C3 plants or of a single species grown in contrasting environments.Abbreviations PCO photorespiratory carbon oxidation - PCR photosynthetic carbon reduction - PPFD photosynthetic photon-flux density - RuBP ribulose bisphosphate  相似文献   

9.
Proteomic analysis provides a powerful method of studying plant responses to stress at the protein level. In order to study stress-responsive molecular mechanisms for Populus × euramericana cv. ‘74/76’, one of the most important forest plantation tree species in subtropical and temperate regions, we analyzed the response of 2-year-old cuttings of P. × euramericana cv. ‘74/76’ to drought and high temperature using two-dimensional gel electrophoresis. More than 1,000 reproducible leaf proteins were detected in the controls and treatments, and 26 proteins were found to change notably in abundance. We identified 13 proteins affected by drought stress and 11 proteins affected by high temperature. These proteins are mainly involved in photosynthesis such as ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and putative photosystem I reaction center subunit II precursor, and detoxification (manganese superoxide dismutase and methionine sulfoxide reductase A). Furthermore, the level of the photosynthesis proteins affected greatly by the imposed stress conditions was consistent with the observed noticeable decrease in net photosynthesis rate. These studies provides a fundamental data for future research on responses to drought and high temperature, two major factors limiting the growth of forest trees during summer under recent climatic warming.  相似文献   

10.
Summary Photosynthesis and respiration of crustose lichens in their natural situation were measured by means of a Walz porometer with a modified cuvette and a plexiglass ring. Habitat influence and the specific performance of three maritime Antarctic species were demonstrated by diurnal courses of microclimate and CO2 exchange during rainy days. In further field experiments the photosynthetic response to soaking with water was tested. Haematomma erythromma is rain-exposed at its natural habitat on coastal rocks but tends to dry out quickly. The photosynthetic efficiency of the chlorophyll of this photophilous species was high. Lecidea sciatrapha appears to be chionophilous and had a low light compensation point of its net photosynthesis. The photosynthetic rates per surface area of these two species were low compared with those of Caloplaca sublobulata. According to its habitat selection C. sublobulata is typified as an ombrophobous lichen. This characterization was confirmed experimentally by our gas exchange measurements.  相似文献   

11.
Kellomäki  Seppo  Wang  Kai-Yun 《Plant Ecology》1998,136(2):229-248
Starting in early spring of 1994, naturally regenerated, 30-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers and exposed in situ to doubled ambient O3,doubled ambient CO2 and a combination of O3 and CO2 from 15 April to 15 September. To investigate daily and seasonal responses of CO2 exchange to elevated O3 and CO2, the CO2 exchange of shoots was measured continuously by an automatic system for measuring gas exchange during the course of one year (from 1 Januray to 31 December 1996). A process-based model of shoot photosynthesis was constructed to quantify modifications in the intrinsic capacity of photosynthesis and stomatal conductance by simulating the daily CO2 exchange data from the field. Results showed that on most days of the year the model simulated well the daily course of shoot photosynthesis. Elevated O3 significantly decreased photosynthetic capacity and stomatal conductance during the whole photosynthetic period. Elevated O3 also led to a delay in onset of photosynthetic recovery in early spring and an increase in the sensitivity of photosynthesis to environmental stress conditions. The combination of elevated O3 and CO2 had an effect on photosynthesis and stomatal conductance similar to that of elevated O3 alone, but significantly reduced the O3-induced depression of photosynthesis. Elevated CO2 significantly increased the photosynthetic capacity of Scots pine during the main growing season but slightly decreased it in early spring and late autumn. The model calculation showed that, compared to the control treatment, elevated O3 alone and the combination of elevated O3 and CO2 decreased the annual total of net photosynthesis per unit leaf area by 55% and 38%, respectively. Elevated CO2 increased the annual total of net photosynthesis by 13%.  相似文献   

12.
G. J. Collatz 《Planta》1977,134(2):127-132
The response of net photosynthesis and apparent light respiration to changes in [O2], light intensity, and drought stress was determined by analysis of net photosynthetic CO2 response curves. Low [O2] treatment resulted in a large reduction in the rate of photorespiratory CO2 evolution. Lightintensity levels influenced the maximum net photosynthetic rate at saturating [CO2]. These results indicate that [CO2], [O2] and light intensity affect the levels of substrates involved in the enzymatic reactions of photosynthesis and photorespiration. Intracellular resistance to CO2 uptake decreased in low [O2] and increased at low leaf water potentials. This response reflects changes in the efficiency with which photosynthetic and photorespiratory substrates are formed and utilized. Water stress had no effect on the CO2 compensation point or the [CO2] at which net photosynthesis began to saturate at high light intensity. The relationship between these data and recently published in-vitro kinetic measurements with ribulose-diphosphate carboxylase is discussed.Abbreviations C w intracellular CO2 concentration - F gross gross photosynthesis - F net net photosynthesis - I light intensity - R L light respiration rate - r c carboxylation resistance - r 8 leaf gas-phase resistance - r i intracellular resistance; to CO2 uptake - r t resistance to CO2 flux between the intercellular spaces and the carboxylation sites - T L leaf temperature - t leaf water potential - CO2 compensation point  相似文献   

13.
H. Fock  K. Klug  D. T. Canvin 《Planta》1979,145(3):219-223
Using an open gas-exchange system, apparent photosynthesis, true photosynthesis (TPS), photorespiration (PR) and dark respiration of sunflower (Helianthus annuus L.) leaves were determined at three temperatures and between 50 and 400 l/l external CO2. The ratio of PR/TPS and the solubility ratio of O2/CO2 in the intercellular spaces both decreased with increasing CO2. The rate of PR was not affected by the CO2 concentration in the leaves and was independent of the solubility ratio of oxygen and CO2 in the leaf cell. At photosynthesis-limiting concentrations of CO2, the ratio of PR/TPS significantly increased from 18 to 30°C and the rate of PR increased from 4.3 mg CO2 dm-2 h-1 at 18°C to 8.6 mg CO2 dm-2 h-1 at 30°C. The specific activity of photorespired CO2 was CO2-dependent but temperature-independent, and the carbon traversing the glycolate pathway appeared to be derived both from recently fixed assimilate and from older reserve materials. It is concluded that PR as a percentage of TPS is affected by the concentrations of O2 and CO2 around the photosynthesizing cells, but the rate of PR may also be controlled by other factors.Abbreviations APS apparent photosynthesis (net CO2 uptake) - PR photorespiration (CO2 evolution in light) - RuBP ribulose-1,5-bisphosphate - TPS true photosynthesis (true CO2 uptake)  相似文献   

14.
The net CO2 assimilation by leaves of maize (Zea mays L. cv. Adonis) plants subjected to slow or rapid dehydration decreased without changes in the total extractable activities of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH) and malic enzyme (ME). The phosphorylation state of PEPC extracted from leaves after 2–3 h of exposure to light was not affected by water deficit, either. Moreover, when plants which had been slowly dehydrated to a leaf relative water content of about 60% were rehydrated, the net CO2 assimilation by leaves increased very rapidly without any changes in the activities of MDH, ME and PEPC or phosphorylation state of PEPC. The net CO2-dependent O2 evolution of a non-wilted leaf measured with an oxygen electrode decreased as CO2 concentration increased and was totally inhibited when the CO2 concentration was about 10%. Nevertheless, high CO2 concentrations (5–10%) counteracted most of the inhibitory effect of water deficit that developed during a slow dehydration but only counteracted a little of the inhibitory effect that developed during a rapid dehydration. In contrast to what could be observed during a rapidly developing water deficit, inhibition of leaf photosynthesis by cis-abscisic acid could be alleviated by high CO2 concentrations. These results indicate that the inhibition of leaf net CO2 uptake brought about by water deficit is mainly due to stomatal closure when a maize plant is dehydrated slowly while it is mainly due to inhibition of non-stomatal processes when a plant is rapidly dehydrated. The photosynthetic apparatus of maize leaves appears to be as resistant to drought as that of C3 plants. The non-stomatal inhibition observed in rapidly dehydrated leaves might be the result of either a down-regulation of the photosynthetic enzymes by changes in metabolite pool sizes or restricted plasmodesmatal transport between mesophyll and bundle-sheath cells.  相似文献   

15.
To obtain basic information for evaluating critical loads of acid deposition for protecting Japanese beech forests, growth, net photosynthesis and leaf nutrient status of Fagus crenata seedlings grown for two growing seasons in brown forest soil acidified with H2SO4 or HNO3 solution were investigated. The whole-plant dry mass of the seedlings grown in the soil acidified by the addition of H2SO4 or HNO3 solution was significantly less than that of the seedlings grown in the control soil not supplemented with H+ as H2SO4 or HNO3 solution. However, the degrees of reduction in the whole-plant dry mass and net photosynthetic rate of the seedlings grown in the soil acidified by the addition of H+ as H2SO4 solution at 100 mg l–1 on the basis of air-dried soil volume (S-100 treatment) were greater than those of the seedlings grown in the soil acidified by the addition of H+ as HNO3 solution at 100 mg l–1 (N-100 treatment). The concentrations of Al and Mn in the leaves of the seedlings grown in the S-100 treatment were significantly higher than those in the N-100 treatment. A positive correlation was obtained between the molar ratio of (Ca+Mg+K)/(Al+Mn) in the soil solution and the relative whole-plant dry mass of the seedlings grown in the acidified soils to that of the seedlings grown in the control soil. Based on the results, we concluded that the negative effects of soil acidification due to sulfate deposition are greater than those of soil acidification due to nitrate deposition on growth, net photosynthesis and leaf nutrient status of F. crenata, and that the molar ratio of (Ca+Mg+K)/(Al+Mn) in soil solution is a suitable soil parameter for evaluating critical loads of acid deposition in efforts to protect F. crenata forests in Japan.  相似文献   

16.
This research investigated the SO2-induced effects on photosynthetic apparatus in two barley (Hordeum vulgare L.) cultivars (cv), Panda and Express. Following a chronic treatment with SO2 (80 ppb, 75 d) neither cv showed any visible signs of injury or chlorosis on leaf surfaces, while a significant reduction in Amax and Gw was detected in both cvs, although to different extents. Thylakoids of SO2-treated plants showed a decrease in the electron transport activity at the whole chain, photosystem II (PSII) and photosystem I (PSI) level in both cvs. The high performance liquid chromatography (HPLC) analysis of leaf pigments revealed a significant decrease in both cvs, more pronounced in Panda than in Express. Deriphat-polyacrilamide gel electrophoresis (Deriphat-PAGE) and two dimensional (2-D) electrophoretic analyses of the pigment-protein complexes did not show differences in SO2-treated samples of either cv. HPLC analysis of the green bands also showed no differences in the pigment content of fumigated samples of either cv, except for a decrease in β-carotene content and xanthophyll cycle pigment (VAZ) content respectively at band 1 (PSI) and band 5 (minor light-harvesting polypeptides of PSII) level in cv Panda, where the de-epoxidation index (DEP) significantly increased, while in Express, an increase in VAZ content and DEP value of band 5 was observed. These results suggest that the decrease in the photosynthetic activity can be ascribed, in addition to stomata closure induced by SO2, to a generalised, rather than specific, pollutant effect on photosynthetic apparatus, which could be interpreted as an adaptation to the adverse environment.  相似文献   

17.
The extent of photorespiration, the inhibition of apparent photosynthesis (APS) by 21% O2, and the leaf anatomical and ultrastructural features of the naturally occurring C3–C4 intermediate species in the diverse Panicum, Moricandia, and Flaveria genera are between those features of representative C3 and C4 plants. The greatest differences between the photosynthetic/photorespiratory CO2 exchange characteristics of the C3–C4 intermediates and C3 plants occur for the parameters which are measured at low pCO2 (i.e., the CO2 compensation concentration and rates of CO2 evolution into CO2-free air in the light). The rates of APS by the intermediate species at atmospheric pCO2 are similar to those of C3 plants.The mechanisms which are responsible for reducing photorespiration in the C3–C4 intermediate species are poorly understood, but two proposals have been advanced. One emphasizes the importance of limited C4 photosynthesis which reduces O2 fixation by ribulose 1,5-bisphosphate carboxylase/oxygenase, and, thus, reduces photorespiration by a CO2-concentrating mechanism, while the other emphasizes the importance of the internal recycling of photorespiratory CO2 evolved from the chloroplast/mitochondrion-containing bundle-sheath cells. There is no evidence from recent studies that limited C4 photosynthesis is responsible for reducing photorespiration in the intermediate Panicum and Moricandia species. However, preliminary results suggest that some, but not all, of the intermediate Flaveria species may possess a limited C4 cycle. The importance of a chlorophyllous bundle-sheath layer in the leaves of intermediate Panicum and Moricandia species in a mechanism based on the recycling of photorespiratory CO2 is uncertain.Therefore, although they have yet to be clearly delineated, different strategies appear to exist in the C3–C4 intermediate group to reduce photorespiration. Of major importance is the finding that some mechanism(s) other than Crassulacean acid metabolism or C4 photosynthesis has (have) evolved in at least the majority of these terrestrial intermediate species to reduce the seemingly wasteful metabolic process of photorespiration.Abbreviations APS apparent (net) photosynthesis - CAM Crassulacean acid metabolism - CE carboxylation efficiency - T CO2 compensation concentration - IRGA infrared gas analysis - Pi orthophosphate - PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate Published as Paper No. 7383, Journal Series, Nebraska Agricultural Experiment Station.  相似文献   

18.
Primary leaves of bean (Phaseolus vulgaris L.) seedlings cultivated for 14 days in a growth chamber on complete (control) and phosphate deficient (−P) Knop liquid medium were used for measurements. The −P leaves were smaller and showed an increased specific leaf area (SLA). Their inorganic phosphate (Pi) concentration was considerably lowered. They did not show any significant changes in chlorophyll (Chl) (a + b) concentration and in their net CO2 assimilation rate when it was estimated under the conditions close to those of the seedlings growth. Light response curves of photosynthetic net O2 evolution (P NO2) of the leaves for the irradiation range up to 500 μmol(photon) m−2 s−1 were determined, using the leaf-disc Clark oxygen electrode. The measurements were taken under high CO2 concentration of about 1 % and O2 concentrations of 21 % or lowered to about 3 % at the beginning of measurement. The results obtained at 21 % O2 and the irradiations close to or higher than those used during the seedlings growth revealed the phosphorus stress suppressive effect on the leaf net O2 evolution, however, no such effect was observed at lower irradiations. Other estimated parameters of P NO2 such as: apparent quantum requirement (QRA) and light compensation point (LCP) for the control and −P leaves were similar. However, with a high irradiation and lowered O2 concentration the rate of P NO2 for the −P leaves was markedly higher than that for the control, in relation to both the leaf area and leaf fresh mass. This difference also disappeared at low irradiations, but the estimated reduced QRA values indicate, under those conditions, the increased yield of photosynthetic light reaction, especially in the −P leaves. The presented results confirm the suggestion that during the initial phase of insufficient phosphate feeding the acclimations in the light phase of photosynthesis, both structural and functional appear. They correspond, probably, to the increased energy costs of carbon assimilation under phosphorus stress, e.g. connected with raised difficulties in phosphate uptake and turnover and enhanced photorespiration. Under the experimental conditions especially advantageous for the dark phase of photosynthesis (saturating CO2 and PAR, low O2 concentration), those acclimations may be manifested as an enhancement of photosynthetic net O2 evolution.  相似文献   

19.
Summary Development of spruce shoot aphid (Cinara pilicornis Hartig) populations was monitored in natural and artificial infestations of Norway spruce (Picea abies Karst.) seedlings, exposed to air pollutants in an experimental field. The pollutants, applied both singly and in mixtures, were gaseous sulphur dioxide, NaF (30 mg l-1 F) and Ca(NO3)2 or (NH4)2SO4 in aqueous solutions (200 mg l-1 N). Aphid numbers on 10 seedlings in each treatment and two control plots were counted at 2-week intervals. At the beginning of the experiment aphid numbers did not differ between treatments. Aphid populations peaked in late June and early July. All the pollutants and their combinations significantly increased the numbers of aphids per seedling. Four apterous females were transferred to spruce seedlings which were growing in containers in the same plots. After 4–5 weeks aphid numbers were significantly higher in the fluoride treatment and in the combined treatment of fluoride, nitrogen and SO2. The pollution treatments did not have a significant effect on shoot growth. Concentrations of F and S in needles were higher in treatments involving these pollutants. There were no significant differences in the concentrations of free amino acids in shoot stems between control and fluoride treatment. However, the relatively low concentration of arginine in the F treatment at the end of the growing season might indicate disturbances in the nitrogen metabolism of spruce seedlings.  相似文献   

20.
Summary Experiments were performed on an evergreen (Heteromeles arbutifolia) and a drought deciduous shrub (Diplacus aurantiacus) to determine, 1) whether approaches for evaluating SO2 absorption by leaves in laboratory studies could be extended to field studies, 2) the effects of irrigation on metabolism and SO2 responses of the study species during a season when water was limiting, 3) to interpret SO2 responses on the basis of SO2 flux rates. Laboratory-developed approaches for evaluating SO2 absorption by leaves were found to be suitable for use with field plants, despite field plants having lower gas exchange rates. Supplementing water during times of deficit did not override all the biological and environmental factors that limited photosynthesis (A). Irrigation increased leaf longevity of D. aurantiacus, and stomatal conductance to water vapour (g); g was also shown to increase with H. arbutifolia on irrigation. Irrigation profoundly influenced plant response to SO2. Unwatered D. aurantiacus had only a small g and therefore a reduced capacity to absorb SO2 and respond to SO2; which resulted in apparent SO2 avoidance. Water availability and SO2 both affect g and therefore, SO2 flux rates into the mesophyll. Different ambient SO2 concentrations of 8.3 and 26.2 mol m-3 (0.2 and 0.6 ppm) were both found to result in similar SO2 flux rates into the leaf, due to variations in g in response to water availability. Changes in g did not always result in changes in A, implying that carbon fixation may be little affected by some SO2 exposures, although still potentially affecting such processes as maintenance of leaf water potential, transpirational cooling and nutrient uptake.Abbreviations SO2 sulphur dioxide - A net photosynthesis - E transpiration - g stomatal conductance to water vapour - W Water vapour mole fraction difference between the leaf and air - WUE water use efficiency (mol CO2 uptake per mol H2O transpired)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号