首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
2.
3.
Hydrophobic interaction chromatography (HIC) is an important technique for the purification of proteins. In this paper, we review three different approaches for predicting protein retention time in HIC, based either on a protein's structure or on its amino-acidic composition, and we have extended one of these approaches. The first approach correlates the protein retention time in HIC with the protein average surface hydrophobicity. This methodology is based on the protein three-dimensional structure data and considers the hydrophobic contribution of the exposed amino acid residues as a weighted average. The second approach, which we have extended, is based on the high correlation level between the average surface hydrophobicity of a protein's hydrophobic interacting zone and its retention time in HIC. Finally, a third approach carries out a prediction of the average surface hydrophobicity of a protein, using only its amino-acidic composition, without knowing its three-dimensional structure. These models would make it possible to test different operating conditions for the purification of a target protein by computer simulations, and thus make it easier to select the optimal conditions, contributing to the rational design and optimization of the process.  相似文献   

4.
5.
6.
7.
It is well established that salt enhances the interaction between solutes (e.g., proteins, displacers) and the weak hydrophobic ligands in hydrophobic interaction chromatography (HIC) and that various salts (e.g., kosmotropes, chaotropes, and neutral) have different effects on protein retention. In this article, the solute affinity in kosmotropic, chaotropic, and neutral mobile phases are compared and the selectivity of solutes in the presence of these salts is examined. Since solute binding in HIC systems is driven by the release of water molecules, the total number of released water molecules in the presence of various types of salts was calculated using the preferential interaction theory. Chromatographic retention times and selectivity reversals of both proteins and displacers were found to be consistent with the total number of released water molecules. Finally, the solute surface hydrophobicity was also found to have a significant effect on its retention in HIC systems.  相似文献   

8.
9.
10.
Prediction of protein retention in hydrophobic interaction chromatography   总被引:2,自引:0,他引:2  
Hydrophobic interaction chromatography (HIC) is a powerful technique for protein separation. This review examines methodologies for predicting protein retention time in HIC involving elution with salt gradients. The methodologies discussed consider three-dimensional structure data of the protein and its surface hydrophobicity. Despite their limitations, the methods discussed are useful in designing purification processes for proteins and easing the tedious experimental work that is currently required for developing purification protocols.  相似文献   

11.
12.
13.
A high-throughput screen (HTS) was developed to evaluate the selectivity of various hydrophobic interaction chromatography (HIC) resins for separating a mAb from aggregate species. Prior to the resin screen, the solubility of the protein was assessed to determine the allowable HIC operating region by examining 384 combinations of pH, salt, and protein concentration. The resin screen then incorporated 480 batch-binding and elution conditions with eight HIC resins in combination with six salts. The results from the screen were reproducible, and demonstrated quantitative recovery of the mAb and aggregate. The translation of the HTS batch-binding data to lab-scale chromatography columns was tested for four conditions spanning the range of product binding and selectivity. After accounting for the higher number of theoretical plates in the columns, the purity and recovery of the lab-scale column runs agreed with the HTS results demonstrating the predictive power of the filterplate system. The HTS data were further analyzed by the calculation of pertinent thermodynamic parameters such as the partition coefficient, K(P), and the separation factor, alpha. The separation factor was used to rank the purification capabilities of the resin and salt conditions explored.  相似文献   

14.
The rational selection of optimal protein purification sequences, as well as mathematical models that simulate and allow optimization of chromatographic protein purification processes have been developed for purification procedures such as ion-exchange, hydrophobic interaction and gel filtration chromatography. This paper investigates the extension of such analysis to affinity chromatography both in the selection of chromatographic processes and in the use of the rate model for mathematical modelling and simulation. Two affinity systems were used: Blue Sepharose and Protein A. The extension of the theory developed previously for ion-exchange and HIC chromatography to affinity separations is analyzed in this paper. For the selection of operations two algorithms are used. In the first, the value of η, which corresponds to the efficiency (resolution) of the actual chromatography and, Σ, which determines the amount of a particular contaminant eliminated after each separation step, which determines the purity, have to be determined. It was found that the value of both these parameters is not generic for affinity separations but will depend on the type of affinity system used and will have to be determined on a case by case basis. With Blue Sepharose a salt gradient was used and with Protein A, a pH gradient. Parameters were determined with individual proteins and simulations of the protein mixtures were done. This approach allows investigation of chromatographic protein purification in a holistic manner that includes ion-exchange, HIC, gel filtration and affinity separations for the first time.  相似文献   

15.
Quantitative structure/retention relationships in affinity chromatography.   总被引:1,自引:0,他引:1  
Affinity chromatography (AC) followed by quantitative structure/retention relationships (QSRR) analysis provides information on both the analytes and the macromolecules forming the stationary phases. QSRR equations derived for test series of analytes (often drugs) are interpreted in terms of structural requirements of the specific binding sites on macromolecules. Chromatographically demonstrated differences in analyte/macromolecule interactions may be relevant to molecular pharmacology and rational drug design. Multiple regression analysis of appropriately designed sets of affinity-chromatographic data may help increase the speed and efficiency of search as for new drugs and reduce the need for in vivo screening. Specific high-performance affinity-chromatographic separations can be optimized by rational selection of chiral columns, the characteristics of which are provided by QSRR.  相似文献   

16.
Unexpected transient changes in effluent pH can occur during ion-exchange chromatography. Such changes can occur even if a column that is equilibrated with a buffer receives another solution in the same buffer and of the same pH but of a different salt concentration. An attempt is made to understand the basis for this phenomenon and apply it to the process purification of a recombinant protein on a strong cation-exchange resin. Incomplete column equilibration was eliminated as a possible cause of these effects. Various buffering species and various salt ions were studied at different solution concentrations to investigate pH transitions on strong cation-exchange resins. A further comparison was made between cation-exchange resins with different backbone chemistries. On the basis of these studies, a mechanism is proposed for these phenomena based on competitive equilibria between ions from the buffer salts and H(+)/OH(-) ions. In addition to the equilibria between these ions and the functional groups on the resins, charged groups on the resin backbone were also found to contribute to transient pH changes. The results from this study were applied to the cation-exchange step for a recombinant protein that was sensitive to pH excursions to help maintain activity of the protein during the purification process.  相似文献   

17.
Interesting retention and selectivity changes have been noted for a number of proteins in hydrophobic interaction chromatography (HIC). In this study, we investigated the degree to which conformational changes may be responsible for selectivity changes of stable proteins. Hydrogen-deuterium isotope exchange detected by mass spectrometry was used to investigate changes in solvent accessibility during adsorption on HIC media. Lysozyme was determined to exhibit EX2 hydrogen exchange kinetics both in solution and adsorbed to Butyl Sepharose 4 Fast Flow and Phenyl Sepharose 6 Fast Flow high sub surfaces. A small, but significant, increase in solvent accessibility was observed upon adsorption. Similar approaches were used to analyze solvent accessibility of three stable proteins with melting temperatures above 50 degrees C exhibiting significant selectivity changes on Butyl Sepharose and Toyopearl Butyl 650M. While all three proteins (lysozyme, chymotrypsinogen A, and ovalbumin) exhibited enhanced exchange while adsorbed, no differences in solvent accessibility on the different adsorbents were observed. More detailed studies of lysozyme showed no significant changes in labeling prior or during elution. These results demonstrate that HIC surfaces examined here do not dramatically alter the structure of these stable proteins and that differences in conformation are not responsible for the selectivity changes observed. Thus, other factors such as different preferred binding orientations or variations between the media pore structure, size, and/or surface chemistry must be responsible.  相似文献   

18.
19.
This study examines protein adsorption behavior and the effects of mobile phase modifiers in multimodal chromatographic systems. Chromatography results with a diverse protein library indicate that multimodal and ion exchange resins have markedly different protein binding behavior and selectivity. NMR results corroborate the stronger binding observed for the multimodal system and provide insight into the structural basis for the observed binding behavior. Protein-binding affinity and selectivity in multimodal and ion exchange systems are then examined using a variety of mobile phase modifiers. Arginine and guanidine are found to have dramatic effects on protein adsorption, yielding changes in selectivity in both chromatographic systems. While sodium caprylate leads to slightly weaker chromatographic retention for most proteins, certain proteins exhibit significant losses in retention in both systems. The presence of a competitive binding mechanism between the multimodal ligand and sodium caprylate for binding to ubiquitin is confirmed using STD NMR. Polyol mobile phase modifiers are shown to result in increased retention for weakly bound proteins and decreased retention for strongly bound proteins, indicating that the overall retention behavior is determined by a balance between changes in electrostatic and hydrophobic interactions. This work provides an improved understanding of protein adsorption and mobile phase modifier effects in multimodal chromatographic systems and sets the stage for future work to develop more selective protein separation systems.  相似文献   

20.
Alkaline conditions are generally preferred for sanitization of chromatography media by cleaning-in-place (CIP) protocols in industrial biopharmaceutical processes. The use of such rigorous conditions places stringent demands on the stability of ligands intended for use in affinity chromatography. Here, we describe efforts to meet these requirements for a divalent proteinaceous human serum albumin (HSA) binding ligand, denoted ABD*dimer. The ABD*dimer ligand was constructed by genetic head-to-tail linkage of two copies of the ABD* moiety, which is a monovalent and alkali-stabilized variant of one of the serum albumin-binding motifs of streptococcal protein G. Dimerization was performed to investigate whether a higher HSA-binding capacity could be obtained by ligand multimerization. We also investigated the influence on alkaline stability and HSA-binding capacity of three variants (VDANS, VDADS and GGGSG) of the inter-domain linker. Biosensor binding studies showed that divalent ligands coupled using non-directed chemistry demonstrate an increased molar HSA-binding capacity compared with monovalent ligands. In contrast, equal molar binding capacities were observed for both types of ligands when using directed ligand coupling chemistry involving the introduction and recruitment of a unique C-terminal cysteine residue. Significantly higher molar binding capacities were also detected when using the directed coupling chemistry. These results were confirmed in affinity chromatography binding capacity experiments, using resins containing thiol-coupled ligands. Interestingly, column sanitization studies involving exposure to 0.1 M NaOH solution (pH 13) showed that of all the tested constructs, including the monovalent ligand, the divalent ligand construct containing the VDADS linker sequence was the most stable, retaining 95% of its binding capacity after 7 h of alkaline treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号