首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apex of hair cells of the chicken auditory organ contains three different kinds of assemblies of actin filaments in close spatial proximity. These are (a) paracrystals of actin filaments with identical polarity in stereocilia, (b) a dense gellike meshwork of actin filaments forming the cuticular plate, and (c) a bundle of parallel actin filaments with mixed polarities that constitute the circumferential filament belt attached to the cytoplasmic aspect of the zonula adhaerens (ZA). Each different supramolecular assembly of actin filaments contains a specific actin filament cross-linking protein which is unique to that particular assembly. Thus fimbrin appears to be responsible for paracrystallin packing of actin filaments in stereocillia; an isoform of spectrin resides in the cuticular plate where it forms the whisker-like crossbridges, and alpha actinin is the actin crosslinking protein of the circumferential ZA bundle. Tropomyosin, which stabilizes actin filaments, is present in all the actin filament assemblies except for the stereocilia. Another striking finding was that myosin appears to be absent from the ZA ring and cuticular plate of hair cells although present in the ZA ring of supporting cells. The abundance of myosin in the ZA ring of the surrounding supporting cells means that it may be important in forming a supporting tensile cellular framework in which the hair cells are inserted.  相似文献   

2.
The structure of the cuticular plate, an in vivo actin gel   总被引:2,自引:1,他引:1       下载免费PDF全文
《The Journal of cell biology》1989,109(6):2853-2867
The cuticular plate is a network of actin filaments found in hair cells of the cochlea. In the alligator lizard, it consists of rootlets, emanating from the stereocilia, and of cross-connecting actin filaments that anchor these rootlets. In thin sections, this network displays striking patches of 650 +/- 110-A striae. By quantitative analyses of the images, the mystery of the striae can be explained. They are due in part to the rootlets which are sets of flat ribbons of actin filaments. The ribbons in each set are separated by approximately 650 A. Numerous whiskers 30 A in diameter extend from each ribbon's face, interconnecting adjacent ribbons. The nonrootlet filaments, except at the margins of the cell, occur primarily as single filaments. Like the ribbons, they are bristling with whiskers. The patches of striae are explained by ribbons and filaments held at a 650-A separation by the whiskers that project from them. A simple model for regions of bewhiskered filaments is a box crammed full of randomly oriented test- tube brushes. A thin slice through the box will show regions of dark lines or striae due to the wire backbones of the brushes separated from one another by the bristle length. Using the computer instead of test- tube brushes, we have been able to model quantitatively the filament distribution and pattern of striae seen in the cuticular plate of the lizard. The organization of actin filaments we have deduced from our simulations differs from that found in macrophages or in the terminal web of intestinal epithelial cells.  相似文献   

3.
Replicas of the apical surface of hair cells of the inner ear (vestibular organ) were examined after quick freezing and rotary shadowing. With this technique we illustrate two previously undescribed ways in which the actin filaments in the stereocilia and in the cuticular plate are attached to the plasma membrane. First, in each stereocilium there are threadlike connectors running from the actin filament bundle to the limiting membrane. Second, many of the actin filaments in the cuticular plate are connected to the apical cell membrane by tiny branched connecting units like a "crow's foot." Where these "feet" contact the membrane there is a small swelling. These branched "feet" extend mainly from the ends of the actin filaments but some connect the lateral surfaces of the actin filaments as well. Actin filaments in the cuticular plate are also connected to each other by finer filaments, 3 nm in thickness and 74 +/- 14 nm in length. Interestingly, these 3-nm filaments (which measure 4 nm in replicas) connect actin filaments not only of the same polarity but of opposite polarities as documented by examining replicas of the cuticular plate which had been decorated with subfragment 1 (S1) of myosin. At the apicolateral margins of the cell we find two populations of actin filaments, one just beneath the tight junction as a network, the other at the level of the zonula adherens as a ring. The latter which is quite substantial is composed of actin filaments that run parallel to each other; adjacent filaments often show opposite polarities, as evidenced by S1 decoration. The filaments making up this ring are connected together by the 3-nm connectors. Because of the polarity of the filaments this ring may be a "contractile" ring; the implications of this is discussed.  相似文献   

4.
Within each tapering stereocilium of the cochlea of the alligator lizard is a bundle of actin filaments with > 3,000 filaments near the tip and only 18-29 filaments at the base where the bundle enters into the cuticular plate; there the filaments splay out as if on the surface of a cone, forming the rootlet. Decoration of the hair cells with subfragment 1 of myosin reveals that all the filaments in the stereocilia, including those that extend into the cuticular plate forming the rootlet, have unidirectional polarity, with the arrowheads pointing towards the cell center. The rest of the cuticular plate is composed of actin filaments that show random polarity, and numerous fine, 30 A filaments that connect the rootlet filaments to each other, to the cuticular plate, and to the membrane. A careful examination of the packing of the actin filaments in the stereocilia by thin sectin and by optical diffraction reveals that the filaments are packed in a paracrystalline array with the crossover points of all the actin helices in hear-perfect register. In transverse sections, the actin filaments are not hexagonally packed but, rather, are arranged in scalloped rows that present a festooned profile. We demonstrated that this profile is a product of the crossbridges by examining serial sections, sections of different thicknesses, and the same stereocilium at two different cutting angles. The filament packing is not altered by fixation in different media, removal of the limiting membrane by detergent extraction, or incubation of extracted hair cells in EGTA, EDTA, and Ca++ and ATP. From our results, we conclude that the stereocilia of the ear, unlike the brush border of intestinal epithelial cells, are not designed to shorten, nor do the filaments appear to slide past one another. In fact, the stereocilium is like a large, rigid structure designed to move as a lever.  相似文献   

5.
《The Journal of cell biology》1989,109(4):1711-1723
The sensory epithelium of the chick cochlea contains only two cell types, hair cells and supporting cells. We developed methods to rapidly dissect out the sensory epithelium and to prepare a detergent-extracted cytoskeleton. High salt treatment of the cytoskeleton leaves a "hair border", containing actin filament bundles of the stereocilia still attached to the cuticular plate. On SDS-PAGE stained with silver the intact epithelium is seen to contain a large number of bands, the most prominent of which are calbindin and actin. Detergent extraction solubilizes most of the proteins including calbindin. On immunoblots antibodies prepared against fimbrin from chicken intestinal epithelial cells cross react with the 57- and 65-kD bands present in the sensory epithelium and the cytoskeleton. It is probable that the 57-kD is a proteolytic fragment of the 65-kD protein. Preparations of stereocilia attached to the overlying tectorial membrane contain the 57- and 65-kD bands. A 400-kD band is present in the cuticular plate. By immunofluorescence, fimbrin is detected in stereocilia but not in the hair borders after salt extraction. The prominent 125 A transverse stripping pattern characteristic of the actin cross-bridges in a bundle is also absent in hair borders suggesting fimbrin as the component that gives rise to the transverse stripes. Because the actin filaments in the stereocilia of hair borders still remain as compact bundles, albeit very disordered, there must be an additional uncharacterized protein besides fimbrin that cross-links the actin filaments together.  相似文献   

6.
Summary The cochleas from chinchilla inner ears were processed in the cold through Lowicryl K4M, and cured by UV light. Thick (2 m) sections were reacted with primary antibodies raised against actin, and anti-actin antibodies localized by FITC epifluorescence. On thin sections from the same blocks anti-actin antibodies were localized ultrastructurally with secondary antibodies coupled to colloidal gold.In the hair cells, actin was present in the stereocilia and cuticular plate, regions where thin filaments were observed by electron microscopy. Colloidal gold was uniformly distributed over these regions and over the stereocilia rootlets demonstrating that actin was present in this region although previously in permeabilized cells, the rootlet was not decorated with myosin subfragment S-1. Actin was present in the pillar and Deiters supporting cells at the reticular lamina and at the basilar membrane, where a meshwork of thin filaments was seen by electron microscopy. Colloidal gold particles were also localized over the thin processes of the pillar and Deiters cells, and over the region of the Deiters cell which envelops the base of the outer hair cell. In these regions actin co-localized with microtubules along the entire length of the supporting cells.  相似文献   

7.
Heavy meromyosin (HMM) decoration of actin filaments was used to detect the polarity of microfilaments in interphase and cleaving rat kangaroo (PtK2) cells. Ethanol at -20 degrees C was used to make the cells permeable to HMM followed by tannic acid-glutaraldehyde fixation for electron microscopy. Uniform polarity of actin filaments was observed at cell junctions and central attachment plaques with the HMM arrowheads always pointing away from the junction or plaque. Stress fibers were banded in appearance with their component microfilaments exhibiting both parallel and antiparallel orientation with respect to one another. Identical banding of microfilament bundles was also seen in cleavage furrows with the same variation in filament polarity as found in stress fibers. Similarly banded fibers were not seen outside the cleavage furrow in mitotic cells. By the time that a mid-body was present, the actin filaments in the cleavage furrow were no longer in banded fibers. The alternating dark and light bands of both the stress fibers and cleavage furrow fibers are approximately equal in length, each measuring approximately 0.16 micrometer. Actin filaments were present in both bands, and individual decorated filaments could sometimes be traced through four band lengths. Undecorated filaments, 10 nm in diameter, could often be seen within the light bands. A model is proposed to explain the arrangement of filaments in stress fibers and cleavage furrows based on the striations observed with tannic acid and the polarity of the actin filaments.  相似文献   

8.
Cytoskeletal elements in arthropod sensilla and mammalian photoreceptors.   总被引:1,自引:0,他引:1  
Ciliary receptor cells, typified by cilia or modified cilia, are very common in the animal kingdom. In addition to the cytoskeleton of their ciliary processes these receptors possess other specific prominent cytoskeletal elements. Two representative systems are presented: i) scolopidia, mechanosensitive sensilla of various arthropod species; and ii) photoreceptor cells of the retina of the bovine eye. Two cytoskeletal structures are characteristic for arthropod scolopidia: a scolopale typifies the innermost auxiliary cell, and long ciliary rootlets are extending well into the sensory cells. The latter element is also characteristic for the inner segment of the photoreceptor cells in bovine. The scolopale of scolopidia is mainly composed of actin filaments. In the absence of myosin, the uniform polarity of the actin filaments and their association with tropomyosin all indicate a stabilizing role of the filament bundles within the scolopale. This function and a certain elasticity of actin filament bundles may be important during stimulation of the sensilla. The ciliary rootlets of both systems originate at the basal bodies at the ciliary base of the sensory cells and project proximally. These rootlets are composed of longitudinally oriented, fine filaments forming a characteristic regular cross-striation. An alpha-actinin immunoreactivity was detected within the ciliary rootlets of scolopidia. In addition, antibodies to centrin react with the rootlets of both types of receptors. Since centrin is largely responsible for the contraction of the flagellar rootlets in green algae, contraction may also occur in the ciliary rootlets of insect sensilla and vertebrate photoreceptors. In both systems, contraction or relaxation of the ciliary rootlets could serve in sensory transduction or adaptation.  相似文献   

9.
Actin filaments in sensory hairs of inner ear receptor cells   总被引:15,自引:11,他引:4       下载免费PDF全文
Receptor cells in the ear are excited through the bending of sensory hairs which project in a bundle from their surface. The individual stereocilia of a bundle contain filaments about 5 nm in diameter. The identity of these filaments has been investigated in the crista ampullaris of the frog and guinea pig by a technique of decoration with subfragment-1 of myosin (S-1). After demembranation with Triton X-100 and incubation with S-1, "arrowhead" formation was observed along the filaments of the stereocilia and their rootlets and also along filaments in the cuticular plate inside the receptor cell. The distance between attached S-1 was 35 nm and arrowheads pointed in towards the cell soma. It is concluded that the filaments of stereocilia are composed of actin.  相似文献   

10.
We have used the method of three-dimensional image reconstruction of electron micrographs to analyse the structure of thin filaments and pure F-actin filaments decorated with myosin subfragment-1. To help improve on the earlier work of Moore et al. (1970), we have obtained all our data using minimal electron dose procedures to reduce radiation damage. Modifications in the specimen preparation have enabled us to process straight stretches of filament twice as long as any used in the earlier work, resulting in a corresponding improvement in the signal-to-noise ratio and the resolution. The results show significant changes in the density distribution in the region near the axis of the structure. Compared with the earlier model, the reconstructions show the presence of extra density close to the axis of the particle. We present a case for identifying actin with the density in this region, rather than with the density at higher radius previously designated as actin. This new assignment for the position of actin within the decorated filament structure leads to a radical change in the geometry of the model for myosin subfragment-lactin interaction. Furthermore, by comparing the features that we identify as actin with the reconstructed images of undecorated thin filaments published by Wakabayashi et al. (1975), we conclude that the polarity that has previously been assumed for the thin filament is incorrect. When the thin filament polarity is reversed, the position that tropomyosin is believed to occupy in the active state coincides with a weakly resolved feature in our reconstructions of decorated thin filaments. These findings, involving a reversal of thin filament polarity combined with the change in the geometry of myosin subfragment-1-actin interaction, allow a revised steric blocking model to be constructed.  相似文献   

11.
Actin filaments were identified in the epithelial cells of rat uterus following detergent extraction and decoration of microfilaments (MF) with myosin subfragment 1 (S1). MF connections with cytoplasmic organelles and the apical plasma membrane are also described. Transmission electron microscopy revealed that the regular microvilli of non-pregnant, oestrous animals contain several decorated MF with rootlets descending into a densely filamentous terminal web. Following mating, the actin cytoskeleton was examined on days 1, 3 and 6 of pregnancy. In this period, the irregular projections that replace MV assumed an underlying, dense network of decorated MF, whilst smoother surfaces displayed few cytoplasmic filaments. At the time of blastocyst implantation, a structured terminal web was no longer present. Structural details were revealed concerning the contents of large, bleb-like projections found on the apical surface.  相似文献   

12.
We have developed an improved method for visualizing actin filament polarity in thin sections. Myosin subfragment-1 (S-1)-decorated actin filaments display a dramatically enhanced arrowhead configuration when fixed in a medium which contains 0.2 % tannic acid. With the exception of brush borders from intestinal epithelial cells, the arrowhead periodicity of decorated filaments in a variety of nonmuscle cells is similar to that in isolated myofibrils. The periodicity of decorated filaments in brush borders is significantly smaller. Actin filaments which attach to membranes display a clear, uniform polarity, with the S-1 arrowheads pointing away from the plasma membrane, while those which comprise the stress fibers of myoblasts and CHO cells have antiparallel polarities. These observations are consistent with a sliding filament mechanism of cell motility.  相似文献   

13.
The mechanosensitive hair cells of the inner ear are crucial to hearing and vestibular function. Each hair cell detects the mechanical stimuli associated with sound or head movement with a hair bundle at the apical surface of the cell, consisting of a precise array of actin‐based stereocilia. Each stereocilium inserts as a rootlet into a dense filamentous actin mesh known as the cuticular plate. Disruption of the parallel actin bundles forming the stereocilia results in hearing impairments and balance defects. The cuticular plate is thought to be involved in holding the stereocilia in place. However, the precise role of the cuticular plate in hair bundle development, maintenance, and hearing remains unknown. Ultrastructural studies have revealed a complex cytoskeletal architecture, but a lack of knowledge of proteins that inhabit the cuticular plate and a dearth of mutations that perturb relevant proteins have hindered our understanding of the functions of the cuticular plate. Here, we discuss what is known about the structure and development of this unique and poorly‐understood actin‐rich organelle. Birth Defects Research (Part C) 105:126–139, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
The three-dimensional organization of the cytoplasm of randomly migrating neutrophils was studied by stereo high-voltage electron microscopy. Examination of whole-mount preparations reveals with unusual clarity the structure of the cytoplasmic ground substance and cytoskeletal organization; similar clarity is not observed in conventional sections. An extensive three-dimensional network of fine filaments (microtrabeculae) approximately 7 to 17 nm in diameter extends throughout the cytoplasm and between the two cell cortices; it also comprises the membrane ruffles and filopodia. The granules are dispersed within the lattice and are surrounded by microtrabeculae. The lattice appears to include dense foci from which the microtrabeculae emerge. Triton X-100 dissolves the plasma membrane, most of the granules, and many of the microtrabecular strands and leaves as a more stable structure a cytoskeletal network composed of various filaments and microtubules. Heavy meromyosin-subfragment 1 (S1) decoration discloses actin filaments as the major filamentous component present in membrane ruffles and filopodia. Actin filaments, extending from the leading edge of the cells, are of uniform polarity, with arrowheads pointing towards the cell body. Likewise, the filaments forming the core of filopodia have the barbed end distal. End-to-side associations of actin filaments as well as fine filaments (2--3 nm) which are not decorated with S1 and link actin filaments are observed. The ventral cell cortex includes numerous substrate-associated dense foci with actin filaments radiating from the dense center. Virtually all the microtubules extend from the centrosome. An average of 35 +/- 7 microtubules originate near the pair of centrioles and radiate towards the cell periphery; microtubule fragments are rare. Intermediate filaments form an open network of single filaments in the perinuclear space. Comparison of Triton-extracted and unextracted cells suggest that many of the filamentous strands seen in unextracted cells have as a core a stable actin filament.  相似文献   

15.
The integument of Pycnogonida (Arthropoda) consists of an epicuticle decorated with tubercles and a filamentous coat, an exocuticle with a small number of ill-defined layers, and an endocuticle whose numerous layers are composed of conspicuously cross-banded fibrils. This cuticular periodicity, attributable to cross-linked chitin, has been observed previously in uncalcified and untanned cuticle of many lower crustaceans, especially branchiopods and copepods, and in scattered examples of thin respiratory or excretory cuticles of other arthropods. It is uniformly present in all representatives of all nine pycnogonid families examined to date. Stomodeal, proctodeal, and arthrodial cuticles are devoid of the endocuticular periodicity. The cuticle is decorated with sensory filaments and setae, but is more noteworthy for a dense coverage by glands, up to 1,400/mm2. Myocuticular junctions have desmosomal fine structure previously found only in chelicerates. Muscle fine structure is that of slow fibers with long sarcomeres and a high actin to myosin filament ratio, except for cardiac muscle, which has short sarcomeres. Among the arthropods, only merostomates resemble the pycnogonids in the lack of fast somatic muscle fibers. Pycnogonids display a hybrid array of fine structural features that variously serve to relate them to some arthropod subphyla and distance them from others. © 1994 Wiley-Liss, Inc.  相似文献   

16.
In order to understand the cytoskeletal architecture at the terminal web of the ciliated cell, we examined chicken tracheal epithelium by quick-freeze deep-etch (QFDE) electron microscopy combined with immunocytochemistry of fodrin. At the terminal web, the cilia ended into the basal bodies and then to the rootlets. The rootlets were composed of several filaments and globular structures attached regularly to them. Decoration with myosin subfragment 1 (S1) revealed that some actin filaments ran parallel to the apical plasma membrane between the basal bodies, and other population traveled perpendicularly or obliquely, i.e., along the rootlets. Some actin filaments were connected to the surface of the basal bodies and the basal feet. Among the basal bodies and the rootlets there existed three kinds of fine crossbridges, which were not decorated with S1. In the deeper part of the terminal web, intermediate filaments were observed between the rootlets and were sometimes crosslinked with the rootlets. Immunocytochemistry combined with the QFDE method revealed that fodrin was a component of fine crossbridges associated with the basal bodies. We concluded that an extensive crosslinker system among the basal bodies and the rootlets along with networks of actin and intermediate filaments formed a structural basis for the effective beating of cilia.  相似文献   

17.
Cytoplasmic actin and cochlear outer hair cell motility   总被引:2,自引:0,他引:2  
Summary Isolated outer hair cells of the guinea pig lacking a cuticular plate and its associated infracuticular network retain the ability to shorten longitudinally and become thinner. Membrane ghosts lacking cytoplasm retain the cylindrical shape of the hair-cell, and although they do not shorten, they retain the ability to constrict and become thinner. These data suggest that cytoplasmic components are associated with outer hair-cell longitudinal shortening and that the lateral wall is responsible for maintaing cell shape and for constriction. Actin, a protein associated with the cytoskeleton and cell motility, is thought to be involved in outer hair-cell motility. To study its role, actin was localized in isolated outer hair cells by use of phalloidin labeled with fluorescein and antibodies against actin coupled to colloidal gold. In permeabilized guinea-pig hair cells stained with phalloidin, actin filaments are found along the lateral wall. In frozen-fixed hair cells actin filaments are distributed uniformly throughout the cytoplasm. Electron-microscopic studies show that antibodies label actin throughout the outer hair-cell body. Thus cytoplasmic actin filaments may provide the structural basis for the contraction-like events.  相似文献   

18.
Previous studies demonstrated that actin filaments have variable twist in which the intersubunit angles vary by approximately +/- 10 degrees within a filament. In this work we show that this variability was unchanged when different methods were used to prepare filaments for electron microscopy. We also show that actin-binding proteins can modulate the variability in twist. Three preparations of actin filaments were photographed in the electron microscope: negatively stained filaments, replicas of rapidly frozen, etched filaments, and frozen hydrated filaments. In addition, micrographs of actin + tropomyosin + troponin (thin filaments), of actin + myosin S1 (decorated filaments), and of filaments frayed from the acrosomal process of Limulus sperm (Limulus filaments) were obtained. We used two independent methods to measure variable twist based on Fourier transforms of single filaments. The first involved measuring layer line intensity versus filament length and the second involved measuring layer line position. We measured a variability in the intersubunit angle of actin filaments of approximately 12 degrees independent of the method of preparation or of measurement. Thin filaments have 15 degrees of variability, but the increase over pure actin is not statistically significant. Decorated filaments and Limulus filaments, however, have significantly less variability (approximately 2 and 1 degree, respectively), indicating a torsional stiffening relative to actin. The results from actin alone using different preparative methods are evidence that variable twist is a property of actin in solution. The results from actin filaments in the presence of actin-binding proteins suggest that the angular variability can be modulated, depending on the biological function.  相似文献   

19.
Summary In this study we examine the fine structure of mechanosensory hairs in the antennule of crayfish. The sensory hair is a stiff shaft with feather-like filaments. The hair's base is a large expansion of membrane which allows the hair shaft to deflect. The sensory transducing elements are located far from the hair, but are coupled mechanically with the hair shaft by a fine extracellular chorda. The sensory element is a type of scolopidium which consists of a scolopale cell and three sensory cells with a 9 + 0 type ciliary process.This type of scolopidium is characteristic of the chordotonal organ that has no cuticular structure on the surface of the exoskeleton. In this crustacean hair receptor, the deflection of the cuticular hair is transmitted through the chorda to the scolopidium which is a tension-sensitive transducer. The present study reveals that the mechanosensory hair of decapod crustaceans is a chordotonal organ accompanied by a cuticular hair structure. We also discuss comparative aspects of cuticular and subcuticular chordotonal organs in arthropods.  相似文献   

20.
The phototransductive microvilli of arthropod photoreceptors each contain an axial cytoskeleton. The present study shows that actin filaments are a component of this cytoskeleton in Drosophila. Firstly, actin was detected in the rhabdomeral microvilli and in the subrhabdomeral cytoplasm by immunogold labeling with antiactin. Secondly, the rhabdomeres were labeled with phalloidin, indicating the presence of filamentous actin. Finally, the actin filaments were decorated with myosin subfragment-1. The characteristic arrowhead complex formed by subfragment-1 decoration points towards the base of the microvilli, so that the fast growing end of each filament is at the distal end of the microvillus, where it is embedded in a detergent-resistant cap. Each microvillus contains more than one actin filament. Decorated filaments extend the entire length of each microvillus and project into the subrhabdomeral cytoplasm. This organization is comparable to that of the actin filaments in intestinal brush border microvilli. Similar observations were made with the photoreceptor microvilli of the crayfish, Procambarus. Our results provide an indication as to how any myosin that is associated with the rhabdomeres might function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号