首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Self-incompatibility (SI) is thought to have played a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In most species, SI is under the control of a complex, multiallelic S-locus. The recognition system is associated with quantitative variations of the strength of the SI reaction; the origin of these variations is still not elucidated. To define the genetic regulations involved, we studied the variability of the SI response in homozygous S 15 S 15 plants in cauliflower. These plants were obtained from a self-progeny of a self-compatible (SC) plant heterozygous for S 15 , which was generated after five selfing generations from one strongly self-incompatible initial plant. We found a continuous phenotypic variation for SI response in the offspring plants homozygous for the S 15 haplotype, from the strict SI reaction to self-compatibility, with a great proportion of the plants being partially self-compatible (PSC). Decrease in SI levels was also observed during the life of the flower. The number of pollen tubes passing through the stigma barrier was higher when counted 3 or 5 days after pollination than one day after pollination. Analysis of the expression of the two key genes regulating self-pollen recognition in cauliflower, the S-locus receptor kinase (SRK) and S-locus cysteine-rich (SCR/SP11) genes, revealed that self-compatibility or PSC was associated with decreased SRK or SCR/SP11 expression. Our work shows the particularly high level of phenotypic plasticity of the SI response associated with certain S-haplotypes in cauliflower.  相似文献   

2.
3.
The S-locus glycoprotein gene, SLG, which participates in the pollen-stigma interaction of self-incompatibility, and its unlinked homologue, SLR1, were analyzed in Raphanus sativus and three self-incompatible ornamental plants in the Brassicaceae. Among twenty-nine inbred lines of R. sativus, eighteen S haplotypes were identified on the basis of DNA polymorphisms detected by genomic Southern analysis using Brassica SLG probes. DNA fragments of SLG alleles specifically amplified from eight S haplotypes by PCR with class I SLG-specific primers showed different profiles following polyacrylamide gel electrophoresis, after digestion with a restriction endonuclease. The nucleotide sequences of the DNA fragments of these eight R. sativus SLG alleles were determined. Degrees of similarity of the nucleotide sequences to a Brassica SLG (S  6 SLG) ranged from 85.6% to 91.9%. Amino acid sequences deduced from these had the twelve conserved cysteine residues and the three hypervariable regions characteristic of Brassica SLGs. Phylogenetic analysis of the SLG sequences from Raphanus and Brassica revealed that the Raphanus SLGs did not form an independent cluster, but were dispersed in the tree, clustering together with Brassica SLGs. These results suggest that diversification of the SLG alleles of Raphanus and Brassica occurred before differentiation of these genera. Although SLR1 sequences from Orychophragmus violaceus were shown to be relatively closely related to Brassica and Raphanus SLR1 sequences, DNA fragments that are highly homologous to the Brassica SLG were not detected in this species. Two other ornamental plants in the Brassicaceae, which are related more distantly to Brassica than Orychophragmus, also lacked sequences highly homologous to Brassica SLG genes. The evolution of self-incompatibility in the Brassicaceae is discussed. Received: 9 October 1997 / Accepted: 27 January 1998  相似文献   

4.
 Several simple methods of DNA preparation from plant tissues were evaluated for PCR-RFLP analyses of SLG and SRK alleles, which can be used for the identification of S haplotypes of breeding lines in broccoli and cabbage (Brassica oleracea L.) and in purity tests of F1 hybrid seeds. On the five methods tested, the NaI method was found to be the most suitable for the amplification of the SLG and SRK alleles. This method enables the use of a single seed as testing material. Using this method, we identified S haplotypes of 31 broccoli and 31 cabbage cultivars. Ninety-four percent of the cultivars of broccoli and 97% of those of cabbage were-single cross F1 hybrids. Nine and 15 S haplotypes were found in broccoli and cabbage, respectively. The small number of S haplotypes in broccoli suggests the importance of incorporating new S haplotypes in the breeding program. Received: 18 February 1999 / Revision received: 4 May 1999 / Accepted: 14 May 1999  相似文献   

5.
Summary S-alleles of self-incompatibility were isolated from a wild population of Brassica campestris growing at Balcesme, Turkey. Out of 88 plants observed, 73 were self-incompatible and 4 were self-compatible. In certain families, selfed progenies from a self-incompatible plant segregated into fewer than three incompatibility classes, which is consistent with a one-locus sporophytic genetic control of self-incompatibility. Out of 25 combinations of S-alleles tested, dominance interactions were observed in 6 of them on the pollen side and on 5 of them on the stigma side. The 35 S-homozygotes thus isolated consisted of 18 independent S-alleles. The number of S-alleles in this population was estimated to be more than 30. The S-locus glycoproteins (SLGs) corresponding to the respective S-alleles were identified by iso-electric focusing (IEF)-gel immunoblotting with a polyclonal antiserum against SLG8. SLGs in a stigma were generally composed of several bands, one major and a few minor ones, whose molecular weight was similar to each other, and the major and minor bands were heritable in correlation with each other. SDS-PAGE analysis of SLGs differentiated a few juxtaposed bands between 50 and 60 kDa, and the variations in these bands were considered to be due to differences in the number of polysaccharide residues. General features of the variation of S-genes and their SLGs between the populations in Balcesme, Turkey and Oguni, Japan, were comparatively similar to one another, despite the different surroundings and history of these populations.  相似文献   

6.
Stylar proteins involved in the self-incompatible (SI) response ofLycopersicon hirsutum have been identified and mapped to the locus that controls SI (S locus).L. esculentum, a self-compatible (SC) species of cultivated tomato, does not display these proteins. Hybrids between SCL. esculentum and SIL. hirsutum are self-sterile despite these individuals bearing pollen containing theS allele ofL. esculentum. In progeny derived from backcrossing the hybrids toL. esculentum, there was a strong correlation between the presence of theS allele fromL. hirsutum and self-infertility. However, this relationship was uncoupled in a number of backcross (BC) progeny. The SI response appeared to be nonexistent in two self-fertile BC individuals that were heterozygous for theS allele ofL. hirsutum, based on Mendelian segregation of a tightly linked DNA marker,CD15, in selfed progeny. Among these progeny self-fertile individuals that were homozygous for theL. hirsutum allele of the linked marker were also determined to be homozygous for anS-related protein ofL. hirsutum through test crosses withL. esculentum. Therefore, plants were produced that were homozygous for a functionalS allele but were self-fertile. This result and other evidence suggest that theS-related proteins are not sufficient to elicit a self-incompatible response inL. esculentum and that there is a mutation(s) inL. esculentum somewhere other than theS locus that leads to self-compatibility.  相似文献   

7.
‘SI1300’ is a self-incompatible Brassica napus line generated by introgressing an S haplotype from B. rapa ‘Xishuibai’ into a rapeseed cultivar ‘Huayou No. 1’. Five S-locus specific primer pairs were employed to develop cleaved amplified polymorphic sequences (CAPS) markers linked the S haplotype of ‘SI1300’. Two segregating populations (F2 and BC1) from the cross between ‘SI1300’ and self-compatible European spring cultivar ‘Defender’, were generated to verify the molecular markers. CAPS analysis revealed no desirable polymorphism between self-incompatible and self-compatible plants. Twenty primer pairs were designed based on the homology-based candidate gene method, and six dominant sequence characterized amplified region (SCAR) markers linked with the S-locus were developed. Of the six markers, three were derived from the SRK and SP11 alleles of class II B. rapa S haplotypes and linked with S haplotype of ‘SI1300’. The other three markers were designed from the SLG-A10 and co-segregated with S haplotype of ‘Defender’. We successfully combined two pairs of them and characterized two multiplex PCR markers which could discriminate the homozygous and heterozygous genotypes. These markers were further validated in 24 F3 and 22 BC1F2 lines of ‘SI1300 × Defender’ and another two segregating populations from the cross ‘SI1300 × Yu No. 9’. Nucleotide sequences of fragments linked with S-locus of ‘SI1300’ showed 99% identity to B. rapa class II S-60 haplotype, and fragments from ‘Defender’ were 97% and 94% identical to SLG and SRK of B. rapa class I S-47 haplotype, respectively. ‘SI1300’ was considered to carry two class II S haplotypes and the S haplotype on the A-genome derived from B. rapa ‘Xishuibai’ determines the SI phenotype, while ‘Defender’ carry a class I S haplotype derived from B. rapa and a class II S haplotype from B. oleracea. SCAR markers developed in this study will be helpful for improving SI lines and accelerating marker-assisted selection process in rapeseed SI hybrid breeding program.  相似文献   

8.
9.
Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. In Brassica, it is controlled by a single multi-allelic locus, S, and it is believed that two highly polymorphic genes in the S locus, SLG and SRK, play central roles in self-recognition in stigmas. SRK is a putative receptor protein kinase, whose extracellular domain exhibits high similarity to SLG. We analyzed two pairs of lines showing cross-incompatibility (S(2) and S(2-b); S(13) and S(13-b)). In S(2) and S(2-b), SRKs were more highly conserved than SLGs. This was also the case with S(13) and S(13-b). This suggests that the SRKs of different lines must be conserved for the lines to have the same self-recognition specificity. In particular, SLG(2-b) showed only 88. 5% identity to SLG(2), which is comparable to that between the SLGs of different S haplotypes, while SRK(2-b) showed 97.3% identity to SRK(2) in the S domain. These findings suggest that the SLGs in these S haplotypes are not important for self-recognition in SI.  相似文献   

10.
In this paper we describe the production of transgenic broccoli and cauliflower with normal phenotype using an Agrobacterium rhizogenes-mediated transformation system with efficient selection for transgenic hairy-roots. Hypocotyls were inoculated with Agrobacterium strain A4T harbouring the bacterial plasmid pRiA4 and a binary vector pMaspro::GUS whose T-DNA region carried the gus reporter gene. pRiA4 transfers TL sequences carrying the rol genes that induce hairy root formation. Transgenic hairy-root production was increased in a difficult-to-transform cultivar by inclusion of 2,4-D in the medium used to resuspend the Agrobacterium prior to inoculation. Transgenic hairy roots could be selected from inoculated explants by screening root sections for GUS activity; this method eliminated the use of antibiotic resistance marker genes for selection. Transgenic hairy roots were produced from two cauliflower and four broccoli culivars. Shoots were regenerated from transgenic hairy root cultures of all four cultivars tested and successfully acclimatized to glasshouse conditions, although some plants had higher than diploid ploidy levels. Southern analysis confirmed the transgenic nature of these plants. T0 plants from seven transgenic lines were crossed or selfed to produce viable seed. Genetic analysis of T1 progeny confirmed the transmission of traits and revealed both independent and co-segregation of Ri TL-DNA and vector T-DNA. GUS-positive phenotypically normal progeny free of TL-DNA were identified in three transgenic lines out of the six tested representing all the cultivars regenerated including both cauliflower and broccoli.  相似文献   

11.
Haudry A  Zha HG  Stift M  Mable BK 《Molecular ecology》2012,21(5):1130-1142
A breakdown of self‐incompatibility (SI) followed by a shift to selfing is commonly observed in the evolution of flowering plants. Both are expected to reduce the levels of heterozygosity and genetic diversity. However, breakdown of SI should most strongly affect the region of the SI locus (S‐locus) because of the relaxation of balancing selection that operates on a functional S‐locus, and a potential selective sweep. In contrast, a transition to selfing should affect the whole genome. We set out to disentangle the effects of breakdown of SI and transition to selfing on the level and distribution of genetic diversity in North American populations of Arabidopsis lyrata. Specifically, we compared sequence diversity of loci linked and unlinked to the S‐locus for populations ranging from complete selfing to fully outcrossing. Regardless of linkage to the S‐locus, heterozygosity and genetic diversity increased with population outcrossing rate. High heterozygosity of self‐compatible individuals in outcrossing populations suggests that SI is not the only factor preventing the evolution of self‐fertilization in those populations. There was a strong loss of diversity in selfing populations, which was more pronounced at the S‐locus. In addition, selfing populations showed an accumulation of derived mutations at the S‐locus. Our results provide evidence that beyond the genome‐wide consequences of the population bottleneck associated with the shift to selfing, the S‐locus of A. lyrata shows a specific signal either reflecting the relaxation of balancing selection or positive selection.  相似文献   

12.
Self-incompatibility (SI) promotes outbreeding in flowering plants, and in Brassica SI is genetically controlled by the S locus. Self-incompatible Brassica and self-fertile Arabidopsis belong to the same crucifer family. In addition, a comparative analysis reveals a high degree of microsynteny between the B. campestris S locus and its homologous region in Arabidopsis– with the notable exception that the Brassica SI genes, SLG and SRK, are missing. Brassica ARC1 encodes a component of the SRK signal transduction pathway leading to self-pollen rejection, and no closely related ARC1 homolog has been identified in Arabidopsis. The purpose of the research reported here was to introduce Brassica SI components into Arabidopsis in an attempt to compensate for the missing genes and to investigate whether the SI phenotype can be transferred. Inserts of approximately 40 kb from the fosmid clones F20 and F22, which span the B. napus W1 SLG-SRK region, were cloned into the plant transformation vector pBIBAC2. Transgenic plants were generated that expressed the Brassica SI genes in the flower buds. In addition, the endogenous, SLG-like, gene AtS1 was not co-suppressed by the Brassica SLG transgene. No SI phenotype was observed among the T1 BIBAC2-F20 and BIBAC2-F22 transgenic plants. When the ARC1 gene was transformed into BIBAC2-F20 or BIBAC2-F22 plants, the resulting BIBAC2-F20-ARC1 and BIBAC2-F22-ARC1 plants still set seeds normally, and no rejection response was observed when self-incompatible B. napus W1 pollen was placed on BIBAC2-F20-ARC1 or BIBAC2-F22-ARC1 Arabidopsis stigmas. Taken together, our results suggest that complementing Arabidopsis genome with Brassica SLG, SRK and ARC1 genes is unlikely to be sufficient to transfer the SI phenotype. Received: 11 November 1999 / Accepted: 14 February 2000  相似文献   

13.
Self-incompatibility (SI) in Brassicaceae is genetically controlled by the S locus complex in which S locus glycoprotein (SLG) and S receptor kinase (SRK) genes have been identified, and these two genes encoding stigma proteins are believed to play important roles in SI recognition reaction. Here we introduced the SLG43 gene of Brassica rapa into a self-incompatible cultivar, Osome, of B. rapa, and examined the effect of this transgene on the SI behavior of the transgenic plants. Preliminary pollination experiments demonstrated that Osome carried S52 and S60, and both were codominant in stigma, but S52 was dominant to S60 in pollen. S43 was found to be recessive to S52 and codominant with S60 in stigma. The nucleotide sequence of SLG43 was more similar to that of SLG52 (87.8% identity) than to that of SLG60 (74.8% identity). Three of the ten primary transformants (designated No. 1 to No. 10) were either completely (No. 9) or partially (No. 6 and No. 7) self-compatible; the SI phenotype of the stigma was changed from S52S60 to S60, but the SI phenotype of the pollen was not altered. In these three plants, the mRNA and protein levels of both SLG43 and SLG52 were reduced, whereas those of SLG60 were not. All the plants in the selfed progeny of No. 9 and No. 6 regained SI and they produced a normal level of SLG52. These results suggest that the alteration of the SI phenotype of the stigma in the transformants Nos. 6, 7, and 9 was the result of specific co-suppression between the SLG43 transgene and the endogenous SLG52 gene. Three of the transformants (Nos. 5, 8 and 10) produced SLG43 protein, but their SI phenotype was not altered. The S60 homozygotes in the selfed progeny of No. 10 which produced the highest level of SLG43 were studied because S43 was codominant with S60 in the stigma. They produced SLG43 at approximately the same level as did S43S60 heterozygotes, but did not show S43 haplotype specificity at the stigma side. We conclude that SLG is necessary for the expression of the S haplotype specificity in the stigma but the introduction of SLG alone is not sufficient for conferring a novel S haplotype specificity to the stigma.  相似文献   

14.
Brassica oleracea L. is highly polymorphic and includes varieties which exhibit a headed phenotype (a large preinflorescence): the curd of cauliflower and `romanesco' (var. botrytis), and the spear of broccoli (var. italica). This headed phenotype results from highly iterative patterns of activity at the primary meristems. Differences in the morphology of curds and spears are accounted for by three quantitative variables: the rate of production of branch primordia on the flanks of the apical meristems (RPP); the number of branch primordia produced before the first formed begin producing their own branch primordia (the iteration interval, ITI); and the duration of the preinflorescence stage (before production of flower primordia). Relatively stable iteration parameters (RPP and ITI) during curd development lead to the production of semi-spherical curds with a smooth surface in cauliflower and broccoli, whereas in `romanesco' RPP and ITI increase throughout curd development, inducing a pyramidal curd with an angular surface. A relatively long preinflorescence stage in cauliflower and `romanesco' results in the curd surface being composed largely of branch primordia, whereas in broccoli this stage is short and the spear surface is made up of flower buds. Simplified growth models for these three headed types are presented. The implications for the genetic control of the B. oleracea L. headed phenotype and the relationships between shoot apical meristem size, phyllotaxis and curd/spear morphology are discussed. Received: 11 September 1997 / Accepted: 12 November 1997  相似文献   

15.
Thirty resynthesized Brassica napus lines with defined S-allele constitution and the ancestral B. oleracea and B. campestris lines were used for the analysis of S- locus glycoproteins (SLGs). The aim of this study was to investigate (1) whether the S-specific glycoproteins of the diploid ancestor lines were also expressed in the amphidiploid hybrids and (2) whether the occurrence of SLG bands was correlated with the activity of the respective S-alleles, which had been tested by means of diallele pollination tests in a previous study. Stigma proteins were separated by isoelectric focusing (IEF)-gel electrophoresis, and glycoprotein bands were identified by Western blotting and Con-A/peroxidase reaction. The SLG bands of the B. campestris parent could be detected in all 30 resynthesized B. napus lines. In contrast, B. oleracea SLG bands could only be detected in 12 resynthesized B. napus lines. Only B. napus lines which carried the dominant B. oleracea S-alleles S8 and S29 showed respective SLG bands in all cases. Nine B. napus lines showed only glycoprotein bands of the B. campestris parent, although the biological functioning of the B. oleracea S-alleles was demonstrated by test-pollinations. New SLG bands different from those of the B. oleracea and B. campestris parents occurred in 16 B. napus lines. The expression level of the SLGs in B. napus was not correlated with the self-incompatibility phenotype, not only in the case of recessive S-alleles (S2, S15), but also for dominant alleles (e.g. S14, S32, S45). Received: 22 January 1999 / Accepted: 30 January 1999  相似文献   

16.
The self-incompatibility (SI) system of a geophytic cactus (Echinopsis chamaecereus Friedrich & G. Rowley) was examined in a series of experiments. Pollination tests indicated that E. chamaecereus is an obligate outbreeding species with a functional SI system. Incompatible matings were characterized by stylar inhibition of pollen tube growth and lack of fruit set. Two S1 seedlings were recovered when plants of one clone were exposed to 42°C for 16 h and flowers were selfed immediately after incubation. The two S1 seedlings and the parental (S0) clone were crossed in a full diallel. Results were consistent with a one-locus, gametophytic SI system with two different S alleles. Disturbed segregation at isozyme locus Lap-1 was attributed to close linkage with the S locus (recombination frequency = 11±8%). This is the second report of close linkage between Lap-1 and S in the Cactaceae. Recevied: 1 February 2001 / Revision accepted: 13 March 2001  相似文献   

17.
Many plants have a self‐incompatibility (SI) system in which the rejection of self‐pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S‐RNase) and multiple S‐locus F‐box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S‐RNase is cytotoxic to self‐pollen, whereas SLFs are thought to collaboratively recognize non‐self S‐RNases in cross‐pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCFSLF (SCF = SKP1‐CUL1‐F‐box‐RBX1) from Petunia pollen. The SCFSLF polyubiquitinates a subset of non‐self S‐RNases in vitro. The polyubiquitinated S‐RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCFSLF complexes in cross‐pollen polyubiquitinate non‐self S‐RNases, resulting in their degradation by the proteasome.  相似文献   

18.
Plant mating systems represent an evolutionary and ecological trade‐off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self‐incompatibility systems exhibit dominance interactions at the S‐locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S‐locus. We investigated this trade‐off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S‐alleles increased mate availability relative to estimates based on individuals that did not share S‐alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life‐history phases evaluated, self‐fertilized offspring suffered a greater than 50% reduction in fitness, while full‐sib and half‐sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self‐incompatibility (SI). This study suggests that dominance interactions at the S‐locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system.  相似文献   

19.
Summary AnS 1.1 self-incompatible (SI) petunia plant which showed atypical seed set was found in an I7 population. This plant showed a strong SI reaction when selfed but produced varying amounts of seed when used as the seed parent in crosses with unrelated individuals homozygous for the sameS allele. Reciprocal crosses yielded no seed indicating that the reaction was a stylar response. Self seed obtained by high temperature treatments produced 18 plants, all of which exhibited the parental characteristics, the ability to reject self pollen but accept, to varying degrees, pollen bearing the sameS allele from unrelated plants. Several petunias homozygous forS 1, and exhibiting various levels of PSC as determined by self seed set, progeny tests and temperature treatments, were used as pollen parents. The mean seed set of these crosses produced a ranking of the pollen parents which reflected the PSC levels obtained by other methods. The behavior of the F1 and F2 populations suggests that the pollen discriminating ability may be a simply inherited, dominant character in these plants. The styles of these unusual petunias illustrate the participation of the pollen tube in determining PSC.Scientific Journal Series Paper Number 10.479 of the Minnesota Agricultural Experiment Station  相似文献   

20.
《Biological Control》2004,29(2):270-277
Host plant-mediated orientation and oviposition by diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) and its predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) were studied in response to four different brassica host plants: cabbage, (Brassica oleracea L. subsp. capitata), cauliflower (B. oleracea L. subsp. botrytis), kohlrabi (B. oleracea L. subsp. gongylodes), and broccoli (B. oleracea L. subsp. italica). Results from laboratory wind tunnel studies indicated that orientation of female DBM and C. carnea females towards cabbage and cauliflower was significantly greater than towards either broccoli or kohlrabi plants. However, DBM and C. carnea males did not orient towards any of the host plants. In no-choice tests, oviposition by DBM did not differ significantly among the test plants, while C. carnea layed significantly more eggs on cabbage, cauliflower, and broccoli than on kohlrabi. However, in free-choice tests, oviposition by DBM was significantly greater on cabbage, followed by cauliflower, broccoli, and kohlrabi, while C. carnea preferred to oviposit on cabbage and cauliflower, followed by broccoli and kohlrabi. The predation rates of DBM by C. carnea on kohlrabi and broccoli were not significantly different from one another, but were significantly higher than that on cabbage and cauliflower. When two types of plant, intact and injured, were available to adult DBM, female oviposition was significantly greater on injured plant leaves than on intact plants leaves. Similarly, C. carnea oviposition was significantly greater on injured plant leaves than on intact leaves. Implications regarding the possible role of green leaf volatiles in host selection/preference, as well as in tritropic interactions, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号