首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous research has suggested that individuals with constitutional hemizygosity of 18q have a higher risk of autistic-like behaviors. We sought to identify genomic factors located on chromosome 18 as well as other loci that correlate with autistic behaviors. One hundred and five individuals with 18q- were assessed by high-resolution oligo aCGH and by parental ratings of behavior on the Gilliam Autism Rating Scale. Forty-five individuals (43%) had scores within the “possibly” or “very likely” categories of risk for an autism diagnosis. We searched for genetic determinants of autism by (1) identifying additional chromosome copy number changes (2) Identifying common regions of hemizygosity on 18q, and (3) evaluating four regions containing candidate genes located on 18q (MBD1, TCF4, NETO1, FBXO15). Three individuals with a “very likely” probability of autism had a captured 17p telomere in addition to the 18q deletion suggesting a possible synergy between hemizygosity of 18q and trigosity of 17p. In addition, two of the individuals with an 18q deletion and a “very likely” probability of autism rating had a duplication of the entire short arm of chromosome 18. Although no common region of hemizygosity on 18q was identified, analysis of four regions containing candidate genes suggested that individuals were significantly more likely to exhibit autistic-like behaviors if their region of hemizygosity included TCF4, NETO1, and FBXO15 than if they had any other combination of hemizygosity of the candidate genes. Taken together, these findings identify several new potential candidate genes or regions for autistic behaviors.  相似文献   

2.
Holoprosencephaly (HPE) is a genetically heterogeneous disorder that affects the midline development of the forebrain and midface in humans. As a step toward identifying one of the HPE genes, we have set out to refine the HPE3 critical region on human chromosome 7q36 by analyzing 34 cell lines from families with cytogenetic abnormalities involving 7q, 24 of which are associated with HPE. Genomic clones surrounding the DNA marker D7S104, which has previously been shown to be in the HPE3 critical region, have been examined by fluorescent in situ hybridization and microsatellite analysis of our panel of patient cell lines. We report the analysis of a cluster of four translocation breakpoints within a 300-kb region of 7q36 that serves to define the minimal critical region for HPE3 and that has directed the search for candidate genes. The human Sonic Hedgehog (hSHH) gene maps to this region and has been shown to be HPE3 on the basis of mutations within the coding region of the gene. We present evidence that cytogenetic deletions and/or rearrangements of this region of chromosome 7q containing Sonic Hedgehog, and translocations that may suppress Sonic Hedgehog gene expression through a position effect are common mechanisms leading to HPE. Received: 23 December 1996 / Accepted: 17 March 1997  相似文献   

3.
Brachydactyly mental retardation syndrome (BDMR) is associated with a deletion involving chromosome 2q37. BDMR presents with a range of features, including intellectual disabilities, developmental delays, behavioral abnormalities, sleep disturbance, craniofacial and skeletal abnormalities (including brachydactyly type E), and autism spectrum disorder. To date, only large deletions of 2q37 have been reported, making delineation of a critical region and subsequent identification of candidate genes difficult. We present clinical and molecular analysis of six individuals with overlapping deletions involving 2q37.3 that refine the critical region, reducing the candidate genes from >20 to a single gene, histone deacetylase 4 (HDAC4). Driven by the distinct hand and foot anomalies and similar cognitive features, we identified other cases with clinical findings consistent with BDMR but without a 2q37 deletion, and sequencing of HDAC4 identified de novo mutations, including one intragenic deletion probably disrupting normal splicing and one intragenic insertion that results in a frameshift and premature stop codon. HDAC4 is a histone deacetylase that regulates genes important in bone, muscle, neurological, and cardiac development. Reportedly, Hdac4−/− mice have severe bone malformations resulting from premature ossification of developing bones. Data presented here show that deletion or mutation of HDAC4 results in reduced expression of RAI1, which causes Smith-Magenis syndrome when haploinsufficient, providing a link to the overlapping findings in these disorders. Considering the known molecular function of HDAC4 and the mouse knockout phenotype, taken together with deletion or mutation of HDAC4 in multiple subjects with BDMR, we conclude that haploinsufficiency of HDAC4 results in brachydactyly mental retardation syndrome.  相似文献   

4.
The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) have been shown to act on a wide range of tissue and cell types, both in the central nervous system and in the periphery. Two distinct receptors for VIP, the VIP receptor type 1 (VIPR1) and the VIP receptor type 2 (VIPR2), have recently been cloned, each of which binds PACAP and VIP with equal affinity. We report here the chromosomal mapping of the human and mouse VIPR2 genes by fluorescencein situhybridization. The VIPR2 gene maps to the human chromosomal region 7q36.3 and to the F2 region of mouse chromosome 12. Our localization of the human gene places it in the region where the locus for the craniofacial defect holoprosencephaly type 3 (HPE3) maps. Further mapping experiments, carried out on cell lines derived from patients with HPE or HPE microforms and associated 7q deletions, have led us to redefine the distal extent of the HPE3 minimal critical region, originally characterized by Gurrieriet al.(1993,Nature Genet.3: 247–251.) The VIPR2 gene lies within this new HPE3 minimal critical region. Our results suggest that deletion of the VIPR2 gene is not the sole factor responsible for the HPE3 phenotype. However, it is possible that monosomy at the VIPR2 locus may contribute to the phenotype observed in many cases of HPE3.  相似文献   

5.
We describe a boy with a de novo deletion of 15.67 Mb spanning 3q22.1q24. He has bilateral micropthalmia, ptosis, cleft palate, global developmental delay and brain, skeletal and cardiac abnormalities. In addition, he has bilateral inguinal hernia and his right kidney is absent. We compare his phenotype with seven other patients with overlapping and molecularly defined interstitial 3q deletions. This patient has some phenotypic features that are not shared by the other patients. More cases with smaller deletions defined by high resolution aCGH will enable better genotype–phenotype correlations and prioritizing of candidate genes for the identification of pathways and disease mechanisms.  相似文献   

6.
Recurrent deletions of 2q32q33 have recently been reported as a new microdeletion syndrome. Clinical features of this syndrome include severe mental retardation, growth retardation, dysmorphic features, thin and sparse hair, feeding difficulties and cleft or high palate. The commonly deleted region contains at least seven genes. Haploinsufficiency of one of these genes, SATB2, a DNA-binding protein that regulates gene expression, has been implicated as causative in the cleft or high palate of individuals with 2q32q33 microdeletion syndrome. In this study we describe three individuals with smaller microdeletions of this region, within 2q33.1. The deletions ranged in size from 173.1 kb to 185.2 kb and spanned part of SATB2. Review of clinical records showed similar clinical features among these individuals, including severe developmental delay and tooth abnormalities. Two of the individuals had behavioral problems. Only one of the subjects presented here had a cleft palate, suggesting reduced penetrance for this feature. Our results suggest that deletion of SATB2 is responsible for several of the clinical features associated with 2q32q33 microdeletion syndrome.  相似文献   

7.
Association studies using linkage disequilibrium (LD) between candidate loci and nearby markers have been proposed to identify susceptibility genes for complex diseases. We analyzed polymorphisms of microsatellites (MSs) and LD patterns of the regions in which candidate genes related to the Th1 immune response have been annotated and attempted to identify a susceptibility gene for sarcoidosis in a marker-based association study. Nineteen MSs were identified in six Th1-related genes (IFNGR1, IFNGR2, IL12RB1, IL12RB2, STAT1 and STAT4) and then eight were further characterized as useful polymorphic markers. Most of these MSs showed LD with single nucleotide polymorphisms (SNPs) on both 5 and 3 ends of these candidate genes, in which r2 values between at least one of the MS marker alleles and the SNPs were higher than 0.1. A significant association with one MS allele near STAT4 was shown and a cluster of SNPs in LD with the MS marker was associated with sarcoidosis. These results suggest that association studies using not only SNPs but also multi-allelic MS within or near candidate loci would be useful markers to search for a disease susceptibility gene, especially in populations with unknown LD structure.  相似文献   

8.
Holoprosencephaly (HPE) is the most common developmental field defect in patterning of the human prosencephalon and associated craniofacial structures. The genetics is complex, with 12 loci defined on 11 chromosomes. We defined a locus for HPE (HPE8) on human chromosome 14q13 between markers D14S49 and AFM205XG5, by mapping deletion intervals of affected subjects with proximal chromosome 14q interstitial cytogenetic deletions. A 35-BAC contig was built by chromosome walking. By annotation of the 2.82-Mb minimal critical region, we identified 28 possible genes. Seven genes were expressed in human fetal brain: NPAS3, SNX6, C14ORF11, C14ORF10, PAX9, NKX2.1, and C14ORF19, the last an apparent gene fragment. Molecular embryology, animal modeling, and human mutation studies were reported elsewhere for PAX9 and NKX2.1. We focused on three genes, SNX6, NPAS3, and C14ORF11, as potential candidates for HPE. Genomic structure, human expression patterns, protein cellular localization, and embryonic expression patterns of orthologous murine genes were determined, showing that the three genes have properties similar to those of known HPE genes.  相似文献   

9.
10.
Holoprosencephaly (HPE), the most common structural malformation of the forebrain in humans, can be detected early during pregnancy using prenatal ultrasonography . Among foetuses with a normal karyotype, 14% have mutations in the four main HPE genes (SHH, ZIC2, SIX3 and TGIF). Genomic rearrangements have now been implicated in many genetic diseases, so we hypothesized that microdeletions in the major HPE genes may also be common in HPE foetuses with severe phenotype or other associated malformations. We screened the DNA obtained from 94 HPE foetuses with a normal karyotype for the presence of microdeletions involving the four major HPE genes (SHH, ZIC2, SIX3 and TGIF). Thirteen of the foetuses had a point mutation in one of the 4 genes and 81 had no known mutations. Quantitative multiplex PCR of short fluorescent fragments (QMPSF) analysis was used for rapid determination of HPE genes copy numbers and the identified microdeletions were confirmed by real time quantitative PCR, or fluorescent in situ hybridization (FISH) (if a cell line was available). Microdeletions were detected in 8 of 94 foetuses (8.5%) (2 in SHH, 2 in SIX3, 3 in ZIC2 and 1 in TGIF genes), and only among the 81 foetuses with a normal karyotype and no point mutations. These data suggest that microdeletions in the four main HPE genes are a common cause of prenatal HPE, as well as point mutations, and increase the total diagnosis rate close to ≈22.3% of foetuses with normal karyotype. Detection can be achieved by the QMPSF testing method that proved to be efficient for testing several genes in a single assay. Databases: SHH - OMIM: 600725; GenBank: NM_000193.2, ZIC2 - OMIM: 603073; GenBank: AF104902.1, SIX3 - OMIM: 603714; GenBank: NM_005413.1, TGIF - OMIM: 602630; GenBank: NM_003244.2, On-line Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/omim/, UCSC (http://www.genome.ucsc.edu/), Ensembl (http://www.ensembl.org/), Database of genomic variants (http://projects.tcag.ca/variation/genomeView.html)  相似文献   

11.
Williams‐Beuren syndrome (WBS) is a neurodevelopmental disorder presenting with an elfin‐like face, supravalvular aortic stenosis, a specific cognitive‐behavioral profile, and infantile hypercalcemia. We encountered two WBS patients presenting with infantile spasms, which is extremely rare in WBS. Array comparative genomic hybridization (aCGH) and fluorescent in situ hybridization (FISH) analyses revealed atypical 5.7‐Mb and 4.1‐Mb deletions at 7q11.23 in the two patients, including the WBS critical region and expanding into the proximal side and the telomeric side, respectively. On the proximal side, AUTS2 and CALN1 may contribute to the phenotype. On the telomeric side, there are two candidate genes HIP1 and YWHAG. Because detailed information of them was unavailable, we investigated their functions using gene knockdowns of zebrafish. When zebrafish ywhag1 was knocked down, reduced brain size and increased diameter of the heart tube were observed, indicating that the infantile spasms and cardiomegaly seen in the patient with the telomeric deletion may be derived from haploinsufficiency of YWHAG. genesis 48:233–243, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Holoprosencephaly: the Maastricht experience.   总被引:1,自引:0,他引:1  
Holoprosencephaly (HPE) is a developmental field defect with impaired cleavage of the embryonic forebrain as the cardinal feature. The prevalence is about 1 in 11.000-20.000 in live births and 1 in 250 during embryogenesis. In most cases, craniofacial abnormalities are associated and reflect in 80% of cases the degree of severity. The severity is of marked variability and ranges from cyclopia to minimal craniofacial dysmorphism, such as mild microcephaly with a single central incisor. The etiology of HPE is very heterogeneous and comprises environmental factors (e.g. maternal diabetes) and genetic causes. Approximately 50% of HPE cases are associated with a cytogenetic abnormality (the most common of which is trisomy 13) or a monogenic syndrome. Based on recurrent cytogenetic abnormalities, there are at least 12 genetic loci that likely contain genes implicated in the pathogenesis of HPE. Currently, four human HPE genes are known: SHH at 7q36, ZIC2 at 13q32, SIX3 at 2p21 and TGIF at 18p11.3. Over the past 13 years, 16 patients with HPE have been observed at the Department of Clinical Genetics at Maastricht. Some of them are briefly presented in order to emphasize the spectral nature of HPE and the etiological heterogeneity. One patient appeared to have a partial 18p deletion due to a maternal cryptic translocation t(1:18) and, in addition, a SHH mutation. The mildest affected patient presented with microcephaly and a single maxillary incisor; she had a submicroscopic 7q deletion. Finally, we propose a protocol of etiological work-up of HPE cases.  相似文献   

13.
Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed.  相似文献   

14.
We set out to define the holoprosencephaly (HPE) critical region on chromosome 21 and also to determine whether there were human homologues of the Drosophila single-minded (sim) gene that might be involved in HPE. Analysis of somatic cell hybrid clones that contained rearranged chromosomes 21 from HPE patients defined the HPE minimal critical region in 21q22.3 as D21S113 to qter. We used established somatic cell hybrid mapping panels to map SIM2 to chromosome 21 within subbands q22.2-q22.3. Analysis of the HPE patient–derived somatic cell hybrids showed that SIM2 is not deleted in two of three patients and thus is not a likely candidate for HPE1, the HPE gene on chromosome 21. However, SIM2 does map within the Down syndrome critical region and thus is a candidate gene that might contribute to the Down syndrome phenotype.  相似文献   

15.
The aim of this study was to locate the candidate tumor suppressor genes (TSGs) loci in the chromosomal 4p15-16, 4q22-23 and 4q34-35 regions associated with the development of uterine cervical carcinoma (CA-CX). Deletion mapping of the regions by microsatellite markers identified six discrete areas with high frequency of deletions, viz. 4p16.2 (D1: 40%), 4p15.31 (D2: 35–38%), 4p15.2 (D3: 37–40%), 4q22.2 (D4: 34%), 4q34.2-34.3 (D5: 37–59%) and 4q35.1 (D6: 40–50%). Significant correlation was noted among the deleted regions D1, D2 and D3. The deletions in D1, D2, D5 and D6 regions are suggested to be associated with the cervical intraepithelial neoplasia (CIN), and deletions in the D2, D3, D5 and D6 regions seems to be associated with progression of CA-CX. The deletions in the D2 and D6 regions showed significant prognostic implications (P = 0.001; 0.02). The expression of the candidate TSG SLIT2 mapped to D2 region gradually reduced from normal cervix uteri →CIN → CA-CX. SLIT2 promoter hypermethylation was seen in 28% CIN samples and significantly increased with tumor progression (P = 0.04). Significant correlation was seen between SLIT2 deletion and its promoter methylation (P = 0.001), indicating that both these phenomena could occur simultaneously to inactivate this gene. Immunohistochemical analysis showed reduced expression of SLIT2 in cervical lesions and CA-CX cell lines. Although no mutation was detected in the SLIT2 promoter region (−432 to + 55 bp), CC and AA haplotypes were seen in −227 and −195 positions, respectively. Thus, it indicates that inactivation of SLIT2-ROBO1 signaling pathway may have an important role in CA-CX development.  相似文献   

16.
Williams syndrome (WS) is a contiguous gene deletion disorder caused by haploinsufficiency of genes at 7q11.23 . We have shown that hemizygosity of elastin is responsible for one feature of WS, supravalvular aortic stenosis (SVAS). We have also implicated LIM-kinase 1 hemizygosity as a contributing factor to impaired visual-spatial constructive cognition in WS. However, the common WS deletion region has not been completely characterized, and genes for additional features of WS, including mental retardation, infantile hypercalcemia, and unique personality profile, are yet to be discovered. Here, we present a physical map encompassing 1.5 Mb DNA that is commonly deleted in individuals with WS. Fluorescence in situ hybridization analysis of 200 WS individuals shows that WS individuals have the consistent deletion interval. In addition, we identify three novel genes from the common deletion region: WS-βTRP, WS-bHLH, and BCL7B. WS-βTRP has four putative β-transducin (WD40) repeats, and WS-bHLH is a novel basic helix-loop-helix leucine zipper (bHLHZip) gene. BCL7B belongs to a novel family of highly conserved genes. We describe the expression profile and genomic structure for each of these genes. Hemizygous deletion of one or more of these genes may contribute to developmental defects in WS. Received: 29 June 1998 / Accepted: 3 September 1998  相似文献   

17.
 Irradiation-induced deletion mapping was exploited to construct a detailed locus-order map around the centromere of tomato chromosome 6 (CEN  6). An F1 hybrid heterozygous for the marker loci thiamineless (tl), yellow virescent (yv) and potato leaf (c), and homozygous recessive for the nematode resistance gene mi, was pollinated with γ-irradiated pollen from cultivar VFNT Cherry carrying the wild-type alleles at the corresponding loci. A dose of 100 Gy was found optimal for inducing mutants. By screening for pseudo-dominant plants showing the marker phenotypes and/or nematode susceptibility, 30 deletions encompassing one or more of the four loci were detected in the M1 generation. Molecular-marker analysis revealed that 29 of these mutants included the tl and mi loci on the short arm and originated from terminal deletions of different sizes. Remarkably, the breakpoints of these deletions were not randomly distributed along the short arm but located within the centromeric heterochromatin. Only one yv interstitial deletion and no c mutations on the long arm of the chromosome were detected. Mapping of the various chromosomal breakpoints in the isolated mutants permitted the resolution of a cluster of molecular markers from the centromeric heterochromatin that was hitherto unresolvable by genetic linkage analysis. The usefulness of such a deletion-mapping approach for whole-genome mapping is discussed. Received: 4 March 1997 / Accepted: 2 June 1997  相似文献   

18.
Cardiovascular malformations and cardiomyopathy are among the most common phenotypes caused by deletions of chromosome 1p36 which affect approximately 1 in 5000 newborns. Although these cardiac-related abnormalities are a significant source of morbidity and mortality associated with 1p36 deletions, most of the individual genes that contribute to these conditions have yet to be identified. In this paper, we use a combination of clinical and molecular cytogenetic data to define five critical regions for cardiovascular malformations and two critical regions for cardiomyopathy on chromosome 1p36. Positional candidate genes which may contribute to the development of cardiovascular malformations associated with 1p36 deletions include DVL1, SKI, RERE, PDPN, SPEN, CLCNKA, ECE1, HSPG2, LUZP1, and WASF2. Similarly, haploinsufficiency of PRDM16–a gene which was recently shown to be sufficient to cause the left ventricular noncompaction–SKI, PRKCZ, RERE, UBE4B and MASP2 may contribute to the development of cardiomyopathy. When treating individuals with 1p36 deletions, or providing prognostic information to their families, physicians should take into account that 1p36 deletions which overlie these cardiac critical regions may portend to cardiovascular complications. Since several of these cardiac critical regions contain more than one positional candidate gene–and large terminal and interstitial 1p36 deletions often overlap more than one cardiac critical region–it is likely that haploinsufficiency of two or more genes contributes to the cardiac phenotypes associated with many 1p36 deletions.  相似文献   

19.
20.
Oculocutaneous albinism (OCA) is caused by mutations in six different genes, and their molecular diagnosis encompasses the search for point mutations and intragenic rearrangements. Here, we used high‐resolution array‐comparative genome hybridization (CGH) to search for rearrangements across exons, introns and regulatory sequences of four OCA genes: TYR, OCA2, TYRP1, and SLC45A2. We identified a total of ten new deletions in TYR, OCA2, and SLC45A2. A complex rearrangement of OCA2 was found in two unrelated patients. Whole‐genome sequencing showed deletion of a 184‐kb fragment (identical to a deletion previously found in Polish patients), whereby a large portion of the deleted sequence was re‐inserted after severe reshuffling into intron 1 of OCA2. The high‐resolution array‐CGH presented here is a powerful tool to detect gene rearrangements. Finally, we review all known deletions of the OCA1–4 genes reported so far in the literature and show that deletions or duplications account for 5.6% of all mutations identified in the OCA1–4 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号