首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactofen, the active ingredient of the soybean disease resistance-inducing herbicide, Cobra, induces large accumulations of isoflavone conjugates and aglycones in soybean tissues. The predominant isoflavones induced in cotyledon tissues are daidzein (and its conjugates) and formononetin and glycitein aglycones. The latter two isoflavones are usually present only at very low levels in soybean seedling tissues. In leaves, the predominant lactofen-induced isoflavones are daidzein and formononetin aglycones and the malonyl-glucosyl conjugate of genistein. Isoflavone induction also occurs in cells distal to the point of treatment, but is only weakly systemic. Lactofen also induces elicitation competency, the capacity of soybean cells to accumulate the pterocarpan phytoalexin glyceollin in response to glucan elicitors from the cell wall of the pathogen Phytophthora sojae. Comparison of the activity of a series of diphenyl ether herbicides demonstrated that while all diphenyl ethers tested induced some degree of elicitation competency, only certain ones induced isoflavone accumulation in the absence of glucan elicitor. As a group the diphenyl ethers are thought to inhibit protoporhyrinogen oxidase, eventually leading to singlet oxygen generation. Another singlet oxygen generator, rose bengal, also induced elicitation competency, but little isoflavone accumulation. It is hypothesized that diphenyl ether-induced activated oxygen species mimic some aspects of hypersensitive cell death, which leads to elicitation competency in infected tissues.  相似文献   

2.
Isoflavonoid biosynthesis and accumulation in developing soybean seeds   总被引:6,自引:0,他引:6  
Isoflavonoids are biologically active natural products that accumulate in soybean seeds during development. The amount of isoflavonoids present in soybean seed is variable, depending on genetic and environmental factors that are not fully understood. Experiments were conducted to determine whether isoflavonoids are synthesized within seed tissues during development, or made in other plant organs and transported to the seeds where they accumulate. An analysis of isoflavonoids by HPLC detected the compounds in all organs of soybean plant, but the amount of isoflavonoids present varied depending on the tissue and developmental stage. The greatest concentrations were found in mature seeds and leaves. The 2-hydroxyisoflavanone synthase genes IFS1 and IFS2 were studied to determine their pattern of expression in different tissues and developmental stages. The highest level of expression of IFS1 was observed in the root and seed coat, while IFS2 was most highly expressed in embryos and pods, and in elicitor-treated or pathogen-challenged tissues. Incorporation of radiolabel into isoflavonoids was observed when developing embryos and other plant organs were fed with [(14)C]phenylalanine. Embryos excised from developing soybean seeds also accumulated isoflavonoids from a synthetic medium. A maternal effect on seed isoflavonoid content was noted in reciprocal crosses between soybean cultivars that differ in seed isoflavonoids. From these results, we propose that developing soybean embryos have an ability to synthesize isoflavonoids de novo, but that transport from maternal tissues may in part contribute to the accumulation of these natural products in the seed.  相似文献   

3.
Soybean isoflavones are valued in certain medicines, cosmetics, foods and feeds. Selection for high-isoflavone content in seeds along with agronomic traits is a goal of many soybean breeders. The aim of the study was to identify the quantitative trait loci (QTL) underlying seed isoflavone content in soybean among seven environments in China. A cross was made between ‘Zhongdou 27’, a soybean cultivar with higher mean isoflavone content in the seven environments (daidzein, DZ, 1,865 μg g−1; genistein, GT, 1,614 μg g−1; glycitein, GC, 311 μg g−1 and total isoflavone, TI, 3,791 μg g−1) and ‘Jiunong 20’, a soybean cultivar with lower isoflavone content (DZ, 844 μg g−1; GT, 1,046 μg g−1; GC, 193 μg g−1 and TI, 2,061 μg g−1). Through single-seed-descent, 130 F5-derived F6 recombinant inbred lines were advanced. A total of 99 simple-sequence repeat markers were used to construct a genetic linkage map. Seed isoflavone contents were analyzed using high-performance liquid chromatography for multiple years and locations (Harbin in 2005, 2006 and 2007, Hulan in 2006 and 2007, and Suihua in 2006 and 2007). Three QTL were associated with DZ content, four with GT content, three with GC content, and five with TI content. For all QTL detected the beneficial allele was from Zhongdou 27. QTL were located on three (DZ), three (GC), four (GT) and five (TI) molecular linkage groups (LG). A novel QTL was detected with marker Satt144 on LG F that was associated with DZ (0.0014 > P > 0.0001, 5% < R 2 < 11%; 254 < DZ < 552 μg g−1), GT (0.0027 > P > 0.0001; 4% < R 2 < 9%; 262 < GT < 391 μg g−1), and TI (0.0011 > P > 0.0001; 4% < R 2 < 15%; 195 < TI < 871 μg g−1) across the various environments. A previously reported QTL on LG M detected by Satt540 was associated with TI across four environments and TI mean (0.0022 > P > 0.0001; 3% < R 2 < 8%; 182 < TI < 334 μg g−1) in China. Because both beneficial alleles were from Zhongdou 27, it was concluded that these two QTL would have the greatest potential value for marker-assisted selection for high-isoflavone content in soybean seed in China. G. Zeng, D. Li and Y. Han have equal contributions to the paper.  相似文献   

4.
Soybean (Glycine max) seeds contain isoflavones that have positive impacts on human health. Four greenhouse experiments were conducted to determine if isoflavone concentration of mature soybean seeds could be increased using elicitor compounds. The effects on soybean seed isoflavone concentrations following foliar applications of two lipo‐chitooligosaccharides (LCO) [Bj V (C18:1 MeFuc) and Bj V (Ac, C16, MeFuc)], chitosan, actinomycetes spores (Streptomyces melanosporofaciens strain EF‐76) and yeast extract at different concentrations and growth stages were evaluated. Combined chitosan seed treatment and foliar applications were also evaluated. Concentrations of daidzein, genistein, glycitein, and total isoflavones were determined by HPLC. Foliar applications of LCOs, chitosan, and actinomycetes caused a marked increase in individual and total isoflavone concentration (ranging between 21% and 84%) of mature seeds when compared to untreated control plants. There were limited differences between the different concentrations and stages of application tested for chitosan and actinomycetes; however, response to LCOs was greatest at higher concentrations (i.e. 10‐6 M) when applied at the early podding stage. Compared to untreated plants, combined seed treatment and foliar applications of chitosan increased individual and total isoflavone concentration of mature soybean seeds by 16% to 93%. Trends were similar for different cultivars, however, the magnitude of the response varied. Finally, response to foliar applications of yeast extract was highly concentration dependent with increases of up to 56% in total isoflavone observed with 2 mg mL‐1. Results indicate that elicitors hold promise as a way of increasing isoflavone concentration of mature soybean seeds.  相似文献   

5.
Despite their medicinal, pharmaceutical, and nutritional importance of isoflavones, the genetic basis controlling the amounts of isoflavones in soybean seeds is still not well understood. The main obstacle is the great variability in the content of isoflavone in seeds harvested from different environments. In this study, quantitative trait loci (QTL) for the content of different isoflavones including daidzein, genistein, and glycitein were investigated in a population of recombinant inbred lines derived from the cross of “Hwangkeum” (Glycine max) by “IT182932” (Glycine soja). Seeds analyzed were harvested in three different experimental environments. QTL analyses for isoflavone content were conducted by composite interval mapping across a genomewide genetic map. Two major QTL were mapped to soybean chromosomes 5 and 8, which were designated QDZGT1 and QDZGT2, respectively. Both loci have not been previously reported in other isoflavone sources. The results from this study will be useful in cloning genes that can control the contents of isoflavones in soybean and for the development of soybean lines containing a high or low isoflavone content.  相似文献   

6.
Soybean isoflavones play diverse roles in human health, including cancers, osteoporosis, heart disease, menopausal symptoms and pabulums. The objective of this study was to identify the quantitative trait loci (QTL) associated with the isoflavones daidzein (DC), genistein (GeC), glycitein (GlC) and total isoflavone contents (TIC) in soybean seeds. A population of 184 F21:0 recombinant inbred lines derived from a ‘Xiaoheidou’ בGR8836’ cross was planted in pot and field conditions to evaluate soybean isoflavones. Twenty-one QTL were detected by composite interval mapping. Several QTL were associated with the traits for DC, GeC, GlC and TIC only. QDGeGlTIC4_1 and QDGlTIC12_1 are reported first in this study and were associated with the DC, GeC, GlC and TIC traits simultaneously. The QTL identified have potential value for marker-assisted selection to develop soybean varieties with desirable isoflavone content.  相似文献   

7.
The time-course of phosphorus (P) accumulation in the phytic acid fraction of developing soybean (Glycine max [L.] Merr. cv `Williams 79') seeds as well as the relation of phytic acid P to total P content were determined. Phytic acid was detected early in embryogenesis in field-grown soybeans and accumulated in a linear fashion throughout most of seed development. Although the observed rates of accumulation ranged from 18.7 micrograms phytic acid P per seed per day in pods positioned low on the plant to 33.6 micrograms in pods positioned high on the plant, the final concentrations were the same in all cases. Nearly all of the P translocated to developing seeds was incorporated into phytic acid from the third week after flowering until physiological maturity, with the sum of nonphytic acid P compounds remaining constant. Phytic acid accumulation was also linear throughout development when soybean plants were grown in solutions having nutrient P levels that ranged from severely limiting (2.0 milligrams P per liter) to excess (50 milligrams P per liter). However, there was a pronounced effect on rate of accumulation, which ranged from 7.2 micrograms phytic acid per seed per day with limiting nutrient P to 44.7 micrograms with excess P. The change in level of phytic acid accounted for most of the alteration in total seed P that was caused by altering the P status of the plants. These results support the view that phytic acid synthesis is involved in P homeostasis of the developing soybean seed.  相似文献   

8.
Soybean [Glycine max (L.) Merr.] cultivars (Meli, Alisa, Sava and 1511/99) were grown up to V1 phase (first trifoliate and one node above unifoliate) and then inoculated with Sclerotinia sclerotiorum (Lib.) de Bary under controlled conditions. Changes in L-phenylalanine ammonia-lyase (PAL) activity and isoflavone phytoalexins were recorded 12, 24, 48 and 72 h after the inoculation. Results showed an increase in PAL activity in all four examined soybean cultivars 48 h after the inoculation, being the highest in Alisa (2-fold higher). Different contents of total daidzein, genistein, glycitein and coumestrol were detected in all samples. Alisa and Sava increased their total isoflavone content (33.9% and 6.2% higher than control, respectively) as well as 1511/99, although 48 h after the inoculation its content decreased significantly. Meli exhibited the highest rate of coumestrol biosynthesis (72 h after the inoculation) and PAL activity (48 h after the inoculation). All investigated cultivars are invariably susceptible to this pathogen. Recorded changes could point to possible differences in mechanisms of tolerance among them.  相似文献   

9.
The environmental sensitivity of the processes associated with the import of photosynthate by developing soybean seeds was investigated within intact fruit and with excised, immature embryos. Intact pods of field-grown (Glycine max [L.] Merr.) Amsoy 71 soybeans were subjected to localized regimes of 0, 21, or 100% O2 and 15, 25, or 35°C during pulsechase translocation experiments and, 2.5 hours later, the uptake and distribution of 14C-photosynthate among dissected fruit tissues determined. In other experiments, excised embryos were incubated in [14C]sucrose solutions under various experimental conditions to separate the effects of these treatments on accumulation by the embryos from those which may operate on phloem unloading in the maternal seedcoat.  相似文献   

10.
Seeds possess a high intrinsic capacity for protein production that makes them a desirable bioreactor platform for the manufacture of transgenic products. One strategy to enhance foreign protein production involves exchanging the capacity to produce intrinsic proteins for the capacity to produce a high level of foreign proteins. Suppression of the alpha/alpha' subunit of beta-conglycinin storage protein synthesis in soybean has been shown previously to result in an increase in the accumulation of the glycinin storage protein, some of which is sequestered as proglycinin into de novo endoplasmic reticulum (ER)-derived protein bodies. The exchange of glycinin for conglycinin is quantitative, with the remodelled soybeans possessing a normal protein content with an altered proteome. The green fluorescent protein (GFP)-kdel reporter was transferred in a construct using the glycinin promoter and terminator to mimic glycinin gene expression. When expressed in soybean seeds, GFP-kdel accreted to form ER-derived protein bodies. The introgression of GFP-kdel into the alpha/alpha' subunit of the beta-conglycinin suppression background resulted in a fourfold enhancement of GFP-kdel accumulation to > 7% (w/w) of the total protein in soybean seeds. The resulting seeds accumulated a single population of ER membrane-bound protein bodies that contained both GFP-kdel and glycinin. Thus, the collateral proteome rebalancing that occurs with the suppression of intrinsic proteins in soybean can be exploited to produce an enhanced level of foreign proteins.  相似文献   

11.
Seeds of soybean [Glycine max (L.) Merr.] accumulate more isoflavones than any tissue of any plant species. In other plant parts, isoflavones are usually released to counteract the effects of various biotic and abiotic stresses. Because of the benefits to the plant and positive implications that consumption may have on human health, increasing isoflavones is a goal of many soybean breeding programs. However, altering isoflavone levels through marker-assisted selection (MAS) has been impractical due to the small and often environmentally variable contributions that each individual quantitative trait locus (QTL) has on total isoflavones. In this study, we developed a Magellan × PI 437654 F7-RIL population to construct a highly saturated non-redundant linkage map that encompassed 451 SNP and SSR molecular markers and used it to locate genomic regions that govern accumulation of isoflavones in the seeds of soybean. Five QTLs were found that contribute to the concentration of isoflavones, having single or multiple additive effects on isoflavone component traits. We also validated a major locus which alone accounted for up to 10% of the phenotypic variance for glycitein, and 35–37% for genistein, daidzein and the sum of all three soybean isoflavones. This QTL was consistently associated with increased concentration of isoflavones across different locations, years and crosses. It was the most important QTL in terms of net increased amounts of all isoflavone forms. Our results suggest that this locus would be an excellent candidate to target for MAS. Also, several minor QTLs were identified that interacted in an additive-by-additive epistatic manner, to increase isoflavone concentration.  相似文献   

12.
Li X  Qin JC  Wang QY  Wu X  Lang CY  Pan HY  Gruber MY  Gao MJ 《Plant cell reports》2011,30(8):1435-1442
Genistein, 4′,5,7-trihydroxyisoflavone, is an isoflavonoid compound predominantly restricted to legumes and known to possess phyto-oestrogenic and antioxidative activities. The key enzyme that redirects phenylpropanoid pathway intermediates from flavonoids to isoflavonoids is the isoflavone synthase (IFS). Brassica napus is a non-legume oilseed crop with vegetative tissues producing phenylpropanoids and flavonoids, but does not naturally accumulate isoflavones due to the absence of IFS. To demonstrate whether exogenous IFS is able to use endogenous substrate to produce isoflavone genistein in oilseed crop, the soybean IFS gene (GmIFS2) was incorporated into B. napus plants. The presence of GmIFS2 in B. napus was shown to direct the synthesis and accumulation of genistein derivatives in leaves up to 0.72 mg g−1 DW. In addition, expression levels for most B. napus genes in the phenylpropanoid pathway were altered. These results suggest that the heterologous GmIFS2 enzyme is functionally active at using the B. napus naringenin as a substrate to produce genistein in oilseed rape.  相似文献   

13.
14.
The effect of field weathering on oxyradical accumulation and subsequent changes were studied in the seeds of soybean [Glycine max (L.) Merr.] cv. JS 71-05. Electron spin resonance (ESR) quantification of oxyradical revealed that field weathering plays an important role in acceleration of their accumulation. One week of weathering increased the accumulation of oxyradicals to almost 2-fold and triggered the deteriorative cascade, by enhancing the lipid peroxidation and membrane perturbation, leading to cell death in seed tissues and poor germinability and vigour of soybean seeds. Thus, the weather conditions at the time of physiological maturity to harvesting of crop are very crucial and the field weathering plays a critical role for the maintenance of seed quality.  相似文献   

15.
Enzymatic control of the accumulation of verbascose in pea seeds   总被引:4,自引:0,他引:4  
Verbascose, the pentasaccharide of the raffinose family of oligosaccharides, consists of galactose units joined to sucrose. In pea (Pisum sativum) seeds, the content of verbascose is highly variable. In a previous study on a high‐verbascose pea cultivar, the present authors have demonstrated that verbascose is synthesized by a multifunctional stachyose synthase (EC 2.4.1.67), which utilizes raffinose as well as stachyose as a galactosyl acceptor. Herein the results of a study of the cloning and functional expression of stachyose synthase from the low‐verbascose genotype SD1 are reported and it is demonstrated that this line contains a protein with a reduced ability to synthesize verbascose. Analysis of seeds from seven pea lines revealed a positive correlation between verbascose synthase activity and verbascose content. Among these genotypes, only the SD1 line showed low verbascose synthase activity when the data were normalized to stachyose synthase activity. These results suggest that differences in the level of verbascose synthase activity could be caused by mutations in the stachyose synthase gene as well as by variation in the amount of the protein. The lines were also analysed for activity of α‐galactosidase, a catabolic enzyme that could limit the extent of verbascose accumulation. No relationship was found between α‐galactosidase activity and the amount of raffinose family oligosaccharides.  相似文献   

16.
ABSTRACT

The protein and oil contents in soybean seeds are major factors in seed quality. Seed proteins and oils are synthesized from sucrose and nitrogenous compounds transported into maturing seeds. In this study, we compared changes in the activity of phosphoenolpyruvate carboxylase (PEPC) and the accumulation profiles of protein and oil in maturing seeds of two soybean cultivars, which exhibit different protein and oil contents in seeds, to determine the interrelationships of them. A principal component analysis indicated a concordance of seed PEPC activity with the protein content, but did not with the oil content. PEPC activity per seed was highest in the late maturation stage, when the physiological status of the vegetative organs drastically changed. The high-protein cultivar had higher PEPC activity compared to the low-protein cultivar. These results highlight the biological role of PEPC in the synthesis of protein, therefore it was implied that PEPC could be a biomarker in soybean breeding.

Abbreviations: ANOVA: analysis of variance; DS: developmental stage; DW: dry weight; FW: fresh weight; NIR: near infrared; PEP(C): phosphoenolpyruvate (carboxylase); PC(A): principal component (analysis); S.E.: standard error; WC: water content.  相似文献   

17.
大豆异黄酮属于黄酮类化合物,是一类具有重要生物活性的化合物,在大豆和传统大豆发酵食品中含量丰富。近年来研究发现大豆异黄酮在预防癌症、骨质疏松症、心血管疾病和改善妇女更年期综合症等方面具有广泛的生理活性,因此引起了国内外学者的广泛关注。大豆异黄酮的研究,不仅为功能性大豆制品的开发提供理论基础,也为人们合理的膳食提供参考。综述近年来国内外对大豆异黄酮生理保健机能的研究进展。  相似文献   

18.
The accumulation of seed reserves is the result of distinct processes occurring in parallel in the main seed compartments of either maternal (seed coats) or zygotic (embryo, endosperm) origin. With the development of legume genomic resources, recent advances have been made toward understanding the metabolic control of seed filling and the regulatory network underlying reserve accumulation. Genetic variability for seed composition has been studied along with the environmental factors influencing reserve accumulation. Nutrient availability and sink strength were both found to be limiting for reserve accumulation. Genes and/or QTL controlling seed protein content and sulfur-amino acid levels have been identified. These new findings will support our attempts to engineer legume seed composition for added end user value.  相似文献   

19.
Metabolic engineering to increase isoflavone biosynthesis in soybean seed   总被引:29,自引:0,他引:29  
  相似文献   

20.
Polymorphism of glycinin in soybean seeds   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号