首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes involved in acute lung inflammation in response to cigarette smoke exposure (CSE). We present the in vivo detection of MMP activity using a specific MMP-activatable, near-infrared, polymer-based proteolytic probe in strains of mice with different susceptibility to developing smoking-induced emphysema (susceptible mice, C57BL/6j, and resistant mice, 129S2/SvHsd) to characterize the distinctive profile of CSE-induced acute inflammation. In vivo imaging of pulmonary inflammation expressing MMPs revealed a significantly different median ratio twofold higher in smoker than in nonsmoker susceptible mice (C57BL/6j) and no significant differences between the smoker and the nonsmoker group in resistant mice (129S2/SvHsd). Ex vivo imaging of the lungs of each group of mice confirmed the same in vivo experiment results obtained for both strains of mice. In the biochemical study of lung tissue, the proteolytic signal colocalized with the endogenously expressed MMP protein levels, with MMP-9 levels that are 2.2 times higher than in the nonsmoke-exposed group in C57BL/6j mice and no significant differences in the 129S2/SvHsd mice. The MMP-activatable probe provides a useful reagent for the in vivo and ex vivo detection of MMP-selective proteolytic activity. We are able to distinguish between susceptible and resistant strains of mice in terms of the profile of MMP activity in the early stages of pulmonary disease.  相似文献   

2.
A variety of mouse models have been used to study the pathogenesis of pulmonary emphysema/chronic obstructive pulmonary disease. The effect of cigarette smoke (CS) is believed to be strain dependent, because certain mouse strains are more susceptible or resistant to development of emphysema. However, the molecular basis of susceptibility of mouse strains to effects of CS is not known. We investigated the effect of CS on lungs of most of the commonly used mouse strains to study the molecular mechanism of susceptibility to effects of CS. C57BL/6J, A/J, AKR/J, CD-1, and 129SvJ mice were exposed to CS for 3 consecutive days, and various parameters of inflammatory and oxidative responses were assessed in lungs of these mice. We found that the C57BL/6J strain was highly susceptible, the A/J, AKR/J, and CD-1 strains were moderately susceptible, and the 129SvJ strain was resistant to lung inflammatory and oxidant responses to CS exposure. The mouse strain that was more susceptible to effects of CS showed augmented lung inflammatory cell influx, activation of NF-kappaB and p38 MAPK, and increased levels of matrix metalloproteinase-9 and NF-kappaB-dependent proinflammatory cytokines compared with resistant mouse strains. Similarly, decreased levels of glutathione were associated with increased levels of lipid peroxidation products in susceptible mouse strains compared with resistant strains. Hence, we identified the susceptible and resistant mouse strains on the basis of the pattern of inflammatory and oxidant responses. Identification of sensitive and resistant mouse strains could be useful for studying the molecular mechanisms of effects of CS on inflammation and pharmacological interventional studies in CS-exposure mouse models.  相似文献   

3.
Repetitive, acute inflammatory insults elicited by cigarette smoke (CS) contribute to the development of chronic obstructive pulmonary disease (COPD), a disorder associated with lung inflammation and mucus hypersecretion. Presently, there is a poor understanding of the acute inflammatory mechanisms involved in this process. The aims of this study were to develop an acute model to investigate temporal inflammatory changes occurring after CS exposure. Rats were exposed to whole body CS (once daily) generated from filtered research cigarettes. Initial studies indicated the generation of a neutrophilic/mucus hypersecreting lung phenotype in <4 days. Subsequent studies demonstrated that just two exposures to CS (15 h apart) elicited a robust inflammatory/mucus hypersecretory phenotype that was used to investigate mechanisms driving this response. Cytokine-induced neutrophil chemoattractants (CINCs) 1-3, the rat growth-related oncogene-alpha family homologs, and IL-1beta demonstrated time-dependent increases in lung tissue or lavage fluid over the 24-h period following CS exposure. The temporal changes in the neutrophil chemokines, CINCs 1-3, mirrored increases in neutrophil infiltration, indicative of a role in neutrophil migration. In addition, a specific CXCR2 antagonist, SB-332235, effectively inhibited CS-induced neutrophilia in a dose-dependent manner, supporting this conclusion. This modeling of the response of the rat airways to acute CS exposure indicates 1) as few as two exposures to CS will induce a phenotype with similarities to COPD and 2) a novel role for CINCs in the generation of this response. These observations represent a paradigm for the study of acute, repetitive lung insults that contribute to the development of chronic disease.  相似文献   

4.
Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE) and its variants in chronic obstructive pulmonary disease (COPD). In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/-) exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.  相似文献   

5.
Epidemiological studies show that approximately 20–30% of chronic smokers develop chronic obstructive pulmonary disease (COPD) while 10–15% develop lung cancer. COPD pre-exists lung cancer in 50–90% of cases and has a heritability of 40–77%, much greater than for lung cancer with heritability of 15–25%. These data suggest that smokers susceptible to COPD may also be susceptible to lung cancer. This study examines the association of several overlapping chromosomal loci, recently implicated by GWA studies in COPD, lung function and lung cancer, in (n = 1400) subjects sub-phenotyped for the presence of COPD and matched for smoking exposure. Using this approach we show; the 15q25 locus confers susceptibility to lung cancer and COPD, the 4q31 and 4q22 loci both confer a reduced risk to both COPD and lung cancer, the 6p21 locus confers susceptibility to lung cancer in smokers with pre-existing COPD, the 5p15 and 1q23 loci both confer susceptibility to lung cancer in those with no pre-existing COPD. We also show the 5q33 locus, previously associated with reduced FEV1, appears to confer susceptibility to both COPD and lung cancer. The 6p21 locus previously linked to reduced FEV1 is associated with COPD only. Larger studies will be needed to distinguish whether these COPD-related effects may reflect, in part, associations specific to different lung cancer histology. We demonstrate that when the “risk genotypes” derived from the univariate analysis are incorporated into an algorithm with clinical variables, independently associated with lung cancer in multivariate analysis, modest discrimination is possible on receiver operator curve analysis (AUC = 0.70). We suggest that genetic susceptibility to lung cancer includes genes conferring susceptibility to COPD and that sub-phenotyping with spirometry is critical to identifying genes underlying the development of lung cancer.  相似文献   

6.
Bacterial infection of lung airways underlies some of the main complications of COPD, significantly impacting disease progression and outcome. Colonization by bacteria may further synergize, amplify, or trigger pathways of tissue damage started by cigarette smoke, contributing to the characteristic airway inflammation and alveolar destruction of COPD. We sought to elucidate the presence and types of lung bacterial populations in different stages of COPD, aimed at revealing important insights into the pathobiology of the disease. Sequencing of the bacterial small subunit ribosomal RNA gene in 55 well-characterized clinical lung samples, revealed the presence of Novosphingobium spp. (>2% abundance) in lungs of patients with GOLD 3-GOLD 4 COPD, cystic fibrosis and a subset of control individuals. Novosphingobium-specific quantitative PCR was concordant with the sequence data and high levels of Novosphingobium spp. were quantifiable in advanced COPD, but not from other disease stages. Using a mouse model of subacute lung injury due to inhalation of cigarette smoke, bronchoalveolar lavage neutrophil and macrophage counts were significantly higher in mice challenged intratracheally with N. panipatense compared to control mice (p<0.01). Frequencies of neutrophils and macrophages in lung tissue were increased in mice challenged with N. panipatense at room air compared to controls. However, we did not observe an interaction between N. panipatense and subacute cigarette smoke exposure in the mouse. In conclusion, Novosphingobium spp. are present in more severe COPD disease, and increase inflammation in a mouse model of smoke exposure.  相似文献   

7.
Ryter SW  Lam HC  Chen ZH  Choi AM 《Autophagy》2011,7(4):436-437
Autophagy, a cellular program for organelle and protein turnover, represents primarily a cell survival mechanism. However, the role of autophagy in the regulation of apoptosis remains unclear. We have observed increases in morphological and biochemical indicators of autophagy in human lung from patients with chronic obstructive pulmonary disease (COPD). Furthermore, we observed induction of autophagic markers in mouse lung subjected to chronic cigarette smoke exposure. Recently, we investigated the role of the autophagic protein microtubule-associated protein 1 light chain 3B (LC3B) as a regulator of lung cell death. We found that LC3B knockout (LC3B(-/-)) mice subjected to chronic cigarette smoke exposure have reduced lung apoptosis, and resist airspace enlargement, relative to wild-type mice. We therefore examined the mechanisms by which LC3B can regulate apoptosis in epithelial cells. We found that LC3B forms a complex with the death receptor Fas in lipid rafts of epithelial cells, which requires the caveolae-resident protein caveolin-1. Genetic interference of caveolin-1 in epithelial cells augments cigarette smoke-induced apoptosis. Caveolin-1 knockout mice exhibit increased autophagic markers, apoptosis, and airspace enlargement in the lung in response to chronic cigarette smoke. These studies demonstrate that LC3B can promote tissue injury during chronic cigarette smoke exposure, and suggest a mechanism by which LC3B, through interactions with caveolin-1 and Fas, can regulate apoptosis. Targeting the autophagic pathway may represent an experimental therapeutic strategy when designing new approaches to COPD treatment.  相似文献   

8.
《Autophagy》2013,9(2):235-237
Autophagy serves a critical function in cellular homeostasis by prolonging survival during nutrient deprivation. Although primarily characterized as a cell survival mechanism, the relationship between autophagy and cell death pathways remains incompletely understood. Autophagy has heretofore not been studied in the context of human pulmonary disease. We have recently observed increased morphological and biochemical markers of autophagy in human lung tissue from patients with chronic obstructive pulmonary disease (COPD). Similar observations of increased autophagy were also made in mouse lung tissue subjected to chronic cigarette smoke exposure, a primary causative agent in COPD, and in pulmonary cells exposed to aqueous cigarette smoke extract. Since knockdown of autophagic regulator proteins inhibited apoptosis in response to cigarette smoke exposure in vitro, we concluded that increased autophagy was associated with increased cell death in this model. We hypothesize that increased autophagy contributes to COPD pathogenesis by promoting epithelial cell death. Further research will examine whether autophagy plays a causative, correlative, or protective role in specific lung pathologies.  相似文献   

9.
《Autophagy》2013,9(4):436-437
Autophagy, a cellular program for organelle and protein turnover, represents primarily a cell survival mechanism. However, the role of autophagy in the regulation of apoptosis remains unclear. We have observed increases in morphological and biochemical indicators of autophagy in human lung from patients with chronic obstructive pulmonary disease (COPD). Furthermore, we observed induction of autophagic markers in mouse lung subjected to chronic cigarette smoke exposure. Recently, we investigated the role of the autophagic protein microtubule-associated protein 1 light chain 3B (LC3B) as a regulator of lung cell death. We found that LC3B knockout (LC3B-/-) mice subjected to chronic cigarette smoke exposure have reduced lung apoptosis, and resist airspace enlargement, relative to wild-type mice. We therefore examined the mechanisms by which LC3B can regulate apoptosis in epithelial cells. We found that LC3B forms a complex with the death receptor Fas in lipid rafts of epithelial cells, which requires the caveolae-resident protein caveolin-1. Genetic interference of caveolin-1 in epithelial cells augments cigarette smoke-induced apoptosis. Caveolin-1 knockout mice exhibit increased autophagic markers, apoptosis, and airspace enlargement in the lung in response to chronic cigarette smoke. These studies demonstrate that LC3B can promote tissue injury during chronic cigarette smoke exposure, and suggest a mechanism by which LC3B, through interactions with caveolin-1 and Fas, can regulate apoptosis. Targeting the autophagic pathway may represent an experimental therapeutic strategy when designing new approaches to COPD treatment.  相似文献   

10.
Parenchymal lung inflammation and airway and alveolar epithelial cell apoptosis are associated with cigarette smoke exposure (CSE), which contributes to chronic obstructive pulmonary disease (COPD). Epidemiological studies indicate that people exposed to chronic cigarette smoke with or without COPD are more susceptible to influenza A virus (IAV) infection. We found increased p53, PAI-1 and apoptosis in AECs, with accumulation of macrophages and neutrophils in the lungs of patients with COPD. In Wild-type (WT) mice with passive CSE (PCSE), p53 and PAI-1 expression and apoptosis were increased in AECs as was lung inflammation, while those lacking p53 or PAI-1 resisted AEC apoptosis and lung inflammation. Further, inhibition of p53-mediated induction of PAI-1 by treatment of WT mice with caveolin-1 scaffolding domain peptide (CSP) reduced PCSE-induced lung inflammation and reversed PCSE-induced suppression of eosinophil-associated RNase1 (EAR1). Competitive inhibition of the p53-PAI-1 mRNA interaction by expressing p53-binding 3’UTR sequences of PAI-1 mRNA likewise suppressed CS-induced PAI-1 and AEC apoptosis and restored EAR1 expression. Consistent with PCSE-induced lung injury, IAV infection increased p53, PAI-1 and apoptosis in AECs in association with pulmonary inflammation. Lung inflammation induced by PCSE was worsened by subsequent exposure to IAV. Mice lacking PAI-1 that were exposed to IAV showed minimal viral burden based on M2 antigen and hemagglutination analyses, whereas transgenic mice that overexpress PAI-1 without PCSE showed increased M2 antigen and inflammation after IAV infection. These observations indicate that increased PAI-1 expression promotes AEC apoptosis and exacerbates lung inflammation induced by IAV following PCSE.  相似文献   

11.
It has been hypothesized that the destruction of lung tissue observed in smokers with chronic obstructive pulmonary disease and emphysema is mediated by neutrophils recruited to the lungs by smoke exposure. This study investigated the role of the chemokine receptor CXCR2 in mediating neutrophilic inflammation in the lungs of mice acutely exposed to cigarette smoke. Exposure to dilute mainstream cigarette smoke for 1 h, twice per day for 3 days, induced acute inflammation in the lungs of C57BL/6 mice, with increased neutrophils and the neutrophil chemotactic CXC chemokines macrophage inflammatory protein (MIP)-2 and KC. Treatment with SCH-N, an orally active small molecule inhibitor of CXCR2, reduced the influx of neutrophils into the bronchoalveolar lavage (BAL) fluid. Histological changes were seen, with drug treatment reducing perivascular inflammation and the number of tissue neutrophils. beta-Glucuronidase activity was reduced in the BAL fluid of mice treated with SCH-N, indicating that the reduction in neutrophils was associated with a reduction in tissue damaging enzymes. Interestingly, whereas MIP-2 and KC were significantly elevated in the BAL fluid of smoke exposed mice, they were further elevated in mice exposed to smoke and treated with drug. The increase in MIP-2 and KC with drug treatment may be due to the decrease in lung neutrophils that either are not present to bind these chemokines or fail to provide a feedback signal to other cells producing these chemokines. Overall, these results demonstrate that inhibiting CXCR2 reduces neutrophilic inflammation and associated lung tissue damage due to acute cigarette smoke exposure.  相似文献   

12.
Cigarette smoking is the strongest risk factor for emphysema. However, sensitivity to cigarette smoke-induced emphysema is highly variable, and numerous genetic and environmental factors are thought to mitigate lung response to injury. We report that the quantity of functional elastin in the lung is an important modifier of both lung development and response to injury. In mice with low levels of elastin, lung development is adversely affected, and mice manifest with congenital emphysema. Animals with intermediate elastin levels exhibit normal alveolar structure but develop worse emphysema than normal mice following cigarette smoke exposure. Mechanical testing demonstrates that lungs with low levels of elastin experience greater tissue strains for any given tissue stress compared with wild-type lungs, implying that force-mediated propagation of lung injury through alveolar wall failure may worsen the emphysema after an initial enzymatic insult. Our findings suggest that quantitative deficiencies in elastin predispose to smoke-induce emphysema in animal models and suggest that humans with altered levels of functional elastin could have relatively normal lung function while being more susceptible to smoke-induced lung injury.  相似文献   

13.
Adiponectin is a cytokine with both proinflammatory and anti-inflammatory properties that is expressed in epithelial cells in the airway in chronic obstructive pulmonary disease-emphysema (COPD-E). To determine whether adiponectin modulates levels of lung inflammation in tobacco smoke-induced COPD-E, we used a mouse model of COPD-E in which either adiponectin-deficient or wild-type (WT) mice were exposed to tobacco smoke for 6 mo. Outcomes associated with tobacco smoke-induced COPD-E were quantitated including lung inflammation [bronchoalveolar lavage (BAL) and total and differential cell count], lung mediators of inflammation (cytokines and chemokines), air space enlargement (i.e., linear intercept), and lung function (tissue elastance) in the different groups of mice. Whereas exposure of WT mice to tobacco smoke for 6 mo induced significant lung inflammation (increased total BAL cells, neutrophils, and macrophages), adiponectin-deficient mice had minimal BAL inflammation when exposed to tobacco smoke for 6 mo. In addition, whereas chronic tobacco-exposed WT mice had significantly increased levels of lung mediators of inflammation [i.e., TNF-α, keratinocyte-derived chemokine (KC), and adiponectin] as well as significantly increased air space enlargement (increased linear intercept) and decreased tissue elastance, exposure of adiponectin-deficient mice to chronic tobacco smoke resulted in no further increase in lung mediators, air space enlargement, or tissue elastance. In vitro studies demonstrated that BAL macrophages derived from adiponectin-deficient mice incubated in media containing tobacco smoke expressed minimal TNF-α or KC compared with BAL macrophages from WT mice. These studies suggest that adiponectin plays an important proinflammatory role in tobacco smoke-induced COPD-E.  相似文献   

14.

Background

Bacterial colonization and recurrent infections of the respiratory tract contribute to the progression of chronic obstructive pulmonary disease (COPD). There is evidence that exacerbations of COPD are provoked by new bacterial strains acquired from the environment. Using a murine model of colonization, we examined whether chronic exposure to cigarette smoke (CS) promotes nasopharyngeal colonization with typical lung pathogens and whether colonization is linked to inflammation in the respiratory tract.

Methods

C57BL/6 N mice were chronically exposed to CS. The upper airways of mice were colonized with nontypeable Haemophilus influenzae (NTHi) or Streptococcus pneumoniae. Bacterial colonization was determined in the upper respiratory tract and lung tissue. Inflammatory cells and cytokines were determined in lavage fluids. RT-PCR was performed for inflammatory mediators.

Results

Chronic CS exposure resulted in significantly increased numbers of viable NTHi in the upper airways, whereas NTHi only marginally colonized air-exposed mice. Colonization with S. pneumoniae was enhanced in the upper respiratory tract of CS-exposed mice and was accompanied by increased translocation of S. pneumoniae into the lung. Bacterial colonization levels were associated with increased concentrations of inflammatory mediators and the number of immune cells in lavage fluids of the upper respiratory tract and the lung. Phagocytosis activity was reduced in whole blood granulocytes and monocytes of CS-exposed mice.

Conclusions

These findings demonstrate that exposure to CS impacts the ability of the host to control bacterial colonization of the upper airways, resulting in enhanced inflammation and susceptibility of the host to pathogens migrating into the lung.  相似文献   

15.
Chronic obstructive pulmonary disease (COPD) affects the health of more than 300 million people worldwide; at present, there is no effective drug to treat COPD. Smoking is the most important risk factor, but the molecular mechanism by which smoking causes the disease is unclear. The senescence of lung epithelial cells is related to development of COPD. Regulation of miRNAs is the main epigenetic mechanism related to aging. β-Galactose staining showed that the lung tissues of smokers have a higher degree of cellular senescence, and the expression of miR-125a-5p is high. This effect is obvious for smokers with COPD/emphysema, and there is a negative correlation between miR-125a-5p levels and values for forced expiratory volume in one second (FEV1)/forced vital capacity (FVC). After Balb/c mice were chronically exposed to various concentrations of cigarette smoke (CS), plethysmography showed that lung function was impaired, lung tissue senescence was increased, and the senescence-associated secretory phenotype (SASP) in bronchoalveolar lavage fluid was increased. For mouse lung epithelial (MLE)-12 cells treated with cigarette smoke extract (CSE), Sp1 and SIRT1 levels were low, HIF-1α acetylation levels were high, and cell senescence and secretion of SASP factors were elevated. Down-regulation of miR-125a-5p or up-regulation of Sp1 reversed these effects. In addition, compared with mice exposed to CS, knockdown of miR-125a-5p reduced lung epithelial cell senescence and COPD/emphysema. Therefore, in smoking-induced COPD, elevated miR-125a-5p participates in the senescence of lung epithelial cells through Sp1/SIRT1/HIF-1α. These findings provide evidence related to the pathogenesis of COPD/emphysema caused by chronic smoking.  相似文献   

16.
The Rgcs1 quantitative trait locus, on mouse chromosome 5, influences susceptibility of retinal ganglion cells to acute damage of the optic nerve. Normally resistant mice (DBA/2J) congenic for the susceptible allele from BALB/cByJ mice exhibit susceptibility to ganglion cells, not only in acute optic nerve crush, but also to chronic inherited glaucoma that is characteristic of the DBA/2J strain as they age. SNP mapping of this QTL has narrowed the region of interest to 1 Mb. In this region, a single gene (Spink2) is the most likely candidate for this effect. Spink2 is expressed in retinal ganglion cells and is increased after optic nerve damage. This gene is also polymorphic between resistant and susceptible strains, containing a single conserved amino acid change (threonine to serine) and a 220 bp deletion in intron 1 that may quantitatively alter endogenous expression levels between strains. Overexpression of the different variants of Spink2 in D407 tissue culture cells also increases their susceptibility to the apoptosis-inducing agent staurosporine in a manner consistent with the differential susceptibility between the DBA/2J and BALB/cByJ strains.  相似文献   

17.
目的:探讨白细胞介素-17A(IL-17A)对慢性阻塞性肺疾病(COPD)的干预作用及其机制。方法:C57BL/6小鼠随机分为野生型空白对照组、野生型COPD组和IL-7A敲除COPD组,每组20只。野生型空白对照组小鼠不做任何处理,其余两组小鼠暴露于香烟烟雾(1支/次,4次/日,每次45 min,每次间隔时间为1 h,总干预时间为90 d)制作COPD模型。干预结束24 h后,利用动物肺功能检测系统测定小鼠肺功能。收集小鼠支气管肺泡灌洗液(BALF),测定BALF细胞计数和分类。收集小鼠肺组织,采用流式细胞法测定气道上皮IL-17A表达水平,采用酶联免疫吸附法测定肺组织炎症因子水平。采用蛋白免疫印迹法测定小鼠肺组织JNK/AP1信号通路蛋白表达水平。结果:与野生型空白对照组小鼠比较,野生型COPD组小鼠气道上皮IL-17A表达水平明显升高,吸气峰流速(PIF)和呼气峰流速(PEF)明显降低,BALF中性粒细胞、嗜酸性粒细胞、淋巴细胞和巨噬细胞数明显升高,肺组织CXC类趋化因子1(CXCL1)、CXC类趋化因子2(CXCL2)、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)表达水平明显升高,JNK、cJun和cFos磷酸化水平及AP1表达水平明显升高(P<0.05);与野生型COPD组小鼠比较,IL-7A敲除COPD组小鼠气道上皮IL-17A表达水平明显降低,PIF和PEF明显升高,BALF中性粒细胞、嗜酸性粒细胞、淋巴细胞和巨噬细胞数明显降低,肺组织CXCL1、CXCL2、IL-1β和IL-6表达水平明显降低,JNK、cJun和cFos磷酸化水平及AP1表达水平明显降低(P<0.05)。结论:香烟烟雾可诱导小鼠气道上皮产生IL-17A,降低(或抑制)IL-17A的产生(或表达或分泌),通过抑制JNK/AP1信号通路,减轻COPD气道炎症反应,改善COPD小鼠肺功能。  相似文献   

18.

Background

Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD). Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD.

Methods

The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells), and CD1a+ cells (Langerhans cells). The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE), and dendritic cells extracted from mice chronically exposed to cigarette smoke.

Results

In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2%) exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1), and B cell lymphoma leukemia-x(L) (Bcl-xL), predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not impaired.

Conclusions

These data indicate that COPD is associated with increased numbers of cells bearing markers associated with Langerhans cells and mature dendritic cells, and that cigarette smoke promotes survival signals and augments survival of dendritic cells. Although CSE suppressed dendritic cell CCR7 expression, migration towards a CCR7 ligand was not diminished, suggesting that reduced CCR7-dependent migration is unlikely to be an important mechanism for dendritic cell retention in the lungs of smokers with COPD.  相似文献   

19.
T Itoh  M Saitoh  H Iwai 《Jikken dobutsu》1989,38(3):269-273
Susceptibility of inbred mouse strains to Sendai virus (Mol strain) infection was studied. Although some mouse strains showed age differences in susceptibility between 3-to 4-week-old and 7-to 8-week-old mice, such age differences in susceptibility were not observed in susceptible DBA/2N and resistant BALB/cA mice. In 7-to 8-week-old mice, remarkable strain differences were observed in mortality and intensity of the lung lesions, but not in lung virus titers and serum antibody, between resistant BALB/cA and susceptible DBA/2N mice.  相似文献   

20.
Oxidative/antioxidative imbalance and chronic inflammation are the main contributors to the pathogenesis of chronic obstructive pulmonary disease (COPD). This study evaluated the effect of recuperating lung decoction (RLD) on inflammation and oxidative stress in rats with COPD induced by cigarette smoke and lipopolysaccharides (LPS). We used intravenous infusion of LPS combined with cigarette smoke exposure as a COPD rat model. We observed that RLD treatment increased the protein level of GSH and the ratio of GSH/GSSG but decreased 8‐OHdG and 4‐HNE in the serum. Furthermore, RLD significantly inhibited the expressions of IL‐1β, IL‐6, TNF‐α, and TGF‐β induced by cigarette smoke exposure, reduced the number of inflammatory cells in the bronchoalveolar lavage fluid, and alleviated the severity of cigarette smoke‐induced emphysema. Mechanistically, RLD treatment prevented disease through downregulation of phosphorylated‐ERK and Nrf2 expression, which regulates the production of proinflammatory cytokines. RLD treatment exerted a dramatic therapeutic effect on COPD. This study revealed a mechanism that RLD functions on the regulation of ERK signalling to inhibit inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号