首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adiponectin has a variety of metabolic effects on obesity, insulin sensitivity, and atherosclerosis. To identify genes influencing variation in plasma adiponectin levels, we performed genome‐wide linkage and association scans of adiponectin in two cohorts of subjects recruited in the Genetic Epidemiology of Metabolic Syndrome Study. The genome‐wide linkage scan was conducted in families of Turkish and southern European (TSE, n = 789) and Northern and Western European (NWE, N = 2,280) origin. A whole genome association (WGA) analysis (500K Affymetrix platform) was carried out in a set of unrelated NWE subjects consisting of approximately 1,000 subjects with dyslipidemia and 1,000 overweight subjects with normal lipids. Peak evidence for linkage occurred at chromosome 8p23 in NWE subjects (lod = 3.10) and at chromosome 3q28 near ADIPOQ, the adiponectin structural gene, in TSE subjects (lod = 1.70). In the WGA analysis, the single‐nucleotide polymorphisms (SNPs) most strongly associated with adiponectin were rs3774261 and rs6773957 (P < 10?7). These two SNPs were in high linkage disequilibrium (r2 = 0.98) and located within ADIPOQ. Interestingly, our fourth strongest region of association (P < 2 × 10?5) was to an SNP within CDH13, whose protein product is a newly identified receptor for high‐molecular‐weight species of adiponectin. Through WGA analysis, we confirmed previous studies showing SNPs within ADIPOQ to be strongly associated with variation in adiponectin levels and further observed these to have the strongest effects on adiponectin levels throughout the genome. We additionally identified a second gene (CDH13) possibly influencing variation in adiponectin levels. The impact of these SNPs on health and disease has yet to be determined.  相似文献   

2.
Journal of Plant Growth Regulation - Crop yield is of a quantitative nature. Two complementary approaches linkage mapping and genome-wide association study (GWAS) have been employed for the...  相似文献   

3.
The genetics underlying the autism spectrum disorders (ASDs) is complex and remains poorly understood. Previous work has demonstrated an important role for structural variation in a subset of cases, but has lacked the resolution necessary to move beyond detection of large regions of potential interest to identification of individual genes. To pinpoint genes likely to contribute to ASD etiology, we performed high density genotyping in 912 multiplex families from the Autism Genetics Resource Exchange (AGRE) collection and contrasted results to those obtained for 1,488 healthy controls. Through prioritization of exonic deletions (eDels), exonic duplications (eDups), and whole gene duplication events (gDups), we identified more than 150 loci harboring rare variants in multiple unrelated probands, but no controls. Importantly, 27 of these were confirmed on examination of an independent replication cohort comprised of 859 cases and an additional 1,051 controls. Rare variants at known loci, including exonic deletions at NRXN1 and whole gene duplications encompassing UBE3A and several other genes in the 15q11–q13 region, were observed in the course of these analyses. Strong support was likewise observed for previously unreported genes such as BZRAP1, an adaptor molecule known to regulate synaptic transmission, with eDels or eDups observed in twelve unrelated cases but no controls (p=2.3×10−5). Less is known about MDGA2, likewise observed to be case-specific (p=1.3×10−4). But, it is notable that the encoded protein shows an unexpectedly high similarity to Contactin 4 (BLAST E-value=3×10−39), which has also been linked to disease. That hundreds of distinct rare variants were each seen only once further highlights complexity in the ASDs and points to the continued need for larger cohorts.  相似文献   

4.
Femoral neck geometric parameters (FNGPs), which include cortical thickness (CT), periosteal diameter (W), buckling ratio (BR), cross-sectional area (CSA), and section modulus (Z), contribute to bone strength and may predict hip fracture risk. Age at menarche (AAM) is an important risk factor for osteoporosis and bone fractures in women. Some FNGPs are genetically correlated with AAM. In this study, we performed a bivariate genome-wide association study (GWAS) to identify new candidate genes responsible for both FNGPs and AAM. In the discovery stage, we tested 760,794 SNPs in 1,728 unrelated Caucasian subject, followed by replication analyses in independent samples of US Caucasians (with 501 subjects) and Chinese (with 826 subjects). We found six SNPs that were associated with FNGPs and AAM. These SNPs are located in three genes (i.e. NRCAM, IDS and LOC148145), suggesting these three genes may co-regulate FNGPs and AAM. Our findings may help improve the understanding of genetic architecture and pathophysiological mechanisms underlying both osteoporosis and AAM.  相似文献   

5.
Spondyloarthritis (SpA) is a chronic inflammatory disorder with a strong genetic predisposition dominated by the role of HLA-B27. However, the contribution of other genes to the disease susceptibility has been clearly demonstrated. We previously reported significant evidence of linkage of SpA to chromosome 9q31–34. The current study aimed to characterize this locus, named SPA2. First, we performed a fine linkage mapping of SPA2 (24 cM) with 28 microsatellite markers in 149 multiplex families, which allowed us to reduce the area of investigation to an 18 cM (13 Mb) locus delimited by the markers D9S279 and D9S112. Second, we constructed a linkage disequilibrium (LD) map of this region with 1,536 tag single-nucleotide polymorphisms (SNPs) in 136 families (263 patients). The association was assessed using a transmission disequilibrium test. One tag SNP, rs4979459, yielded a significant P-value (4.9×10−5). Third, we performed an extension association study with rs4979459 and 30 surrounding SNPs in LD with it, in 287 families (668 patients), and in a sample of 139 cases and 163 controls. Strong association was observed in both familial and case/control datasets for several SNPs. In the replication study, carried with 8 SNPs in an independent sample of 232 cases and 149 controls, one SNP, rs6478105, yielded a nominal P-value<3×10−2. Pooled case/control study (371 cases and 312 controls) as well as combined analysis of extension and replication data showed very significant association (P<5×10−4) for 6 of the 8 latter markers (rs7849556, rs10817669, rs10759734, rs6478105, rs10982396, and rs10733612). Finally, haplotype association investigations identified a strongly associated haplotype (P<8.8×10−5) consisting of these 6 SNPs and located in the direct vicinity of the TNFSF15 gene. In conclusion, we have identified within the SPA2 locus a haplotype strongly associated with predisposition to SpA which is located near to TNFSF15, one of the major candidate genes in this region.  相似文献   

6.
Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.  相似文献   

7.
Patients with schizophrenia and their siblings typically show subtle changes of brain structures, such as a reduction of hippocampal volume. Hippocampal volume is heritable, may explain a variety of cognitive symptoms of schizophrenia and is thus considered an intermediate phenotype for this mental illness. The aim of our analyses was to identify single-nucleotide polymorphisms (SNP) related to hippocampal volume without making prior assumptions about possible candidate genes. In this study, we combined genetics, imaging and neuropsychological data obtained from the Mind Clinical Imaging Consortium study of schizophrenia (n = 328). A total of 743,591 SNPs were tested for association with hippocampal volume in a genome-wide association study. Gene expression profiles of human hippocampal tissue were investigated for gene regions of significantly associated SNPs. None of the genetic markers reached genome-wide significance. However, six highly correlated SNPs (rs4808611, rs35686037, rs12982178, rs1042178, rs10406920, rs8170) on chromosome 19p13.11, located within or in close proximity to the genes NR2F6, USHBP1, and BABAM1, as well as four SNPs in three other genomic regions (chromosome 1, 2 and 10) had p-values between 6.75×10−6 and 8.3×10−7. Using existing data of a very recently published GWAS of hippocampal volume and additional data of a multicentre study in a large cohort of adolescents of European ancestry, we found supporting evidence for our results. Furthermore, allelic differences in rs4808611 and rs8170 were highly associated with differential mRNA expression in the cis-acting region. Associations with memory functioning indicate a possible functional importance of the identified risk variants. Our findings provide new insights into the genetic architecture of a brain structure closely linked to schizophrenia. In silico replication, mRNA expression and cognitive data provide additional support for the relevance of our findings. Identification of causal variants and their functional effects may unveil yet unknown players in the neurodevelopment and the pathogenesis of neuropsychiatric disorders.  相似文献   

8.
The aim of this study was to evaluate whether two single-nucleotide polymorphisms (SNPs), AF4/FMR2 family, member 1 (AFF1) rs340630 and AF4/FMR2 family, member 3 (AFF3) rs10865035, show significant evidence for association with systemic lupus erythematosus (SLE) in a Chinese population. A total of 868 Chinese patients with SLE and 975 geographically and ethnically matched healthy control subjects were enrolled in the current study. The genotypes of these two SNPs were determined by Sequenom MassArray technology. Significant evidence for association of AFF3 rs10865035 with SLE was detected (for A versus G, P?=?4.81?×?10?4, odds ratio (OR) 1.26, 95?% confidence interval (95 %CI) 1.11–1.44). However, no association between AFF1 rs340630 and SLE was found in the Chinese population (for A versus G, P?=?0.79, OR 0.98, 95 %CI 0.86–1.12). No significant evidence for association of AFF3 rs10865035 polymorphism with any clinical features was detected. By targeting a variant with convincing evidence for association with rheumatoid arthritis, significant association of AFF3 rs10865035 with SLE was detected in the Chinese population, indicating that AFF3 might be a common autoimmunity gene. Further case-control studies based on larger sample sizes in diverse ethnic populations are required to clarify the role of AFF1 rs340630 in SLE.  相似文献   

9.
Central abdominal fat is a strong risk factor for diabetes and cardiovascular disease. To identify common variants influencing central abdominal fat, we conducted a two-stage genome-wide association analysis for waist circumference (WC). In total, three loci reached genome-wide significance. In stage 1, 31,373 individuals of Caucasian descent from eight cohort studies confirmed the role of FTO and MC4R and identified one novel locus associated with WC in the neurexin 3 gene [NRXN3 (rs10146997, p=6.4×10−7)]. The association with NRXN3 was confirmed in stage 2 by combining stage 1 results with those from 38,641 participants in the GIANT consortium (p=0.009 in GIANT only, p=5.3×10−8 for combined analysis, n=70,014). Mean WC increase per copy of the G allele was 0.0498 z-score units (0.65 cm). This SNP was also associated with body mass index (BMI) [p=7.4×10−6, 0.024 z-score units (0.10 kg/m2) per copy of the G allele] and the risk of obesity (odds ratio 1.13, 95% CI 1.07–1.19; p=3.2×10−5 per copy of the G allele). The NRXN3 gene has been previously implicated in addiction and reward behavior, lending further evidence that common forms of obesity may be a central nervous system-mediated disorder. Our findings establish that common variants in NRXN3 are associated with WC, BMI, and obesity.  相似文献   

10.
11.
12.
13.
Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer''s disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer''s Disease Research Center (ADRC) and Alzheimer''s Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10−10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases.  相似文献   

14.
15.
For genome-wide association studies in family-based designs, a new, universally applicable approach is proposed. Using a modified Liptak’s method, we combine the p-value of the family-based association test (FBAT) statistic with the p-value for the Van Steen-statistic. The Van Steen-statistic is independent of the FBAT-statistic and utilizes information that is ignored by traditional FBAT-approaches. The new test statistic takes advantages of all available information about the genetic association, while, by virtue of its design, it achieves complete robustness against confounding due to population stratification. The approach is suitable for the analysis of almost any trait type for which FBATs are available, e.g. binary, continuous, time-to-onset, multivariate, etc. The efficiency and the validity of the new approach depend on the specification of a nuisance/tuning parameter and the weight parameters in the modified Liptak’s method. For different trait types and ascertainment conditions, we discuss general guidelines for the optimal specification of the tuning parameter and the weight parameters. Our simulation experiments and an application to an Alzheimer study show the validity and the efficiency of the new method, which achieves power levels that are comparable to those of population-based approaches.  相似文献   

16.
Growing evidence from epidemiological studies indicates the association between rheumatoid arthritis (RA) and measles. However, the exact mechanism for this association is still unclear now. We consider that the strong association between both diseases may be caused by shared genetic pathways. We performed a pathway analysis of large-scale RA genome-wide association studies (GWAS) dataset with 5,539 cases and 20,169 controls of European descent. Meanwhile, we evaluated our findings using previously identified RA loci, protein-protein interaction network and previous results from pathway analysis of RA and other autoimmune diseases GWAS. We confirmed four pathways including Cytokine-cytokine receptor interaction, Jak-STAT signaling, T cell receptor signaling and Cell adhesion molecules. Meanwhile, we highlighted for the first time the involvement of Measles and Intestinal immune network for IgA production pathways in RA. Our results may explain the strong association between RA and measles, which may be caused by the shared genetic pathway. We believe that our results will be helpful for future genetic studies in RA pathogenesis and may significantly assist in the development of therapeutic strategies.  相似文献   

17.
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10−8, HR = 1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10−8, HR = 1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P = 3.4×10−8, HR = 1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10−4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.  相似文献   

18.
《PLoS genetics》2015,11(10)
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.  相似文献   

19.
To investigate the genetics of late-onset myasthenia gravis (LOMG), we conducted a genome-wide association study imputation of >6 million single nucleotide polymorphisms (SNPs) in 532 LOMG cases (anti–acetylcholine receptor [AChR] antibody positive; onset age ≥50 years) and 2,128 controls matched for sex and population substructure. The data confirm reported TNFRSF11A associations (rs4574025, P = 3.9 × 10−7, odds ratio [OR] 1.42) and identify a novel candidate gene, ZBTB10, achieving genome-wide significance (rs6998967, P = 8.9 × 10−10, OR 0.53). Several other SNPs showed suggestive significance including rs2476601 (P = 6.5 × 10−6, OR 1.62) encoding the PTPN22 R620W variant noted in early-onset myasthenia gravis (EOMG) and other autoimmune diseases. In contrast, EOMG-associated SNPs in TNIP1 showed no association in LOMG, nor did other loci suggested for EOMG. Many SNPs within the major histocompatibility complex (MHC) region showed strong associations in LOMG, but with smaller effect sizes than in EOMG (highest OR ~2 versus ~6 in EOMG). Moreover, the strongest associations were in opposite directions from EOMG, including an OR of 0.54 for DQA1*05:01 in LOMG (P = 5.9 × 10−12) versus 2.82 in EOMG (P = 3.86 × 10−45). Association and conditioning studies for the MHC region showed three distinct and largely independent association peaks for LOMG corresponding to (a) MHC class II (highest attenuation when conditioning on DQA1), (b) HLA-A and (c) MHC class III SNPs. Conditioning studies of human leukocyte antigen (HLA) amino acid residues also suggest potential functional correlates. Together, these findings emphasize the value of subgrouping myasthenia gravis patients for clinical and basic investigations and imply distinct predisposing mechanisms in LOMG.  相似文献   

20.
张菁晶  冯晶  朱英国  李阳生 《遗传》2006,28(10):1299-1306
运用隐马尔可夫模型, 利用Perl编程, 以几种模式生物的蛋白质数据库为基础, 构建了目标基因的全基因组预测的新方法。该方法具有高通量, 准确度高且操作简易等优点, 特别在多结构域蛋白家族预测上更显优势。应用该方法对几种模式生物的全基因组PPR和TPR蛋白家族进行了预测, 其中粳稻日本晴中含有536个PPR蛋白、199个TPR蛋白; 籼稻9311中含有519个PPR蛋白、177个TPR蛋白; 拟南芥中含有735个PPR蛋白、292个TPR蛋白; 红藻中6个PPR蛋白、32个TPR蛋白; 蓝细菌以及古细菌中没有PPR蛋白, 但蓝细菌含有10个TPR蛋白, 古细菌有4个TPR蛋白, 并对所得结果进行了进一步生物信息学分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号