首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Irisin was recently identified as a putative myokine that is induced by exercise. Studies suggest that it is produced by cleavage of the FNDC5 (fibronectin domain-containing protein 5) receptor; irisin corresponds to the extracellular receptor ectodomain. Data suggesting that irisin stimulates white-to-brown fat conversion have led to the hypothesis that it does so by binding an unknown receptor, thus functioning as a myokine. As brown fat promotes energy dissipation, myokines that elicit the transformation of white to brown fat have potentially profound benefits in the treatment of obesity and metabolic disorders. Understanding the molecular basis for such exercise-induced phenomena is thus of considerable interest. Moreover, FNDC5-like receptors are highly conserved and have been shown to be critical for neuronal development. However, the structural and molecular mechanisms utilized by these proteins are currently unknown. Here, we describe the crystal structure and biochemical characterization of the FNDC5 ectodomain, corresponding to the irisin myokine. The 2.28 Å structure shows that irisin consists of an N-terminal fibronectin III (FNIII)-like domain attached to a flexible C-terminal tail. Strikingly, the FNIII-like domain forms a continuous intersubunit β-sheet dimer, previously unobserved for any FNIII protein. Biochemical data confirm that irisin is a dimer and that dimerization is unaffected by glycosylation. This finding suggests a possible mechanism for receptor activation by the irisin domain as a preformed myokine dimer ligand or as a paracrine or autocrine dimerization module on FNDC5-like receptors.  相似文献   

3.

Background

The B3 DNA binding domain includes five families: auxin response factor (ARF), abscisic acid-insensitive3 (ABI3), high level expression of sugar inducible (HSI), related to ABI3/VP1 (RAV) and reproductive meristem (REM). The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily.

Methodology

In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family.

Conclusions

Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.  相似文献   

4.
Several members of the Ly-6/uPAR (LU)-protein domain family are differentially expressed in human squamous epithelia. In some cases, they even play important roles in maintaining skin homeostasis, as exemplified by the secreted single domain member, SLURP-1, the deficiency of which is associated with the development of palmoplantar hyperkeratosis in the congenital skin disorder Mal de Meleda. In the present study, we have characterized a new member of the LU-protein domain family, which we find to be predominantly expressed in the stratum granulosum of human skin, thus resembling the expression of SLURP-1. In accordance with its expression pattern, we denote this protein product, which is encoded by the LYPD5 gene, as Haldisin (human antigen with LU-domains expressed in skin). Two of the five human glycolipid-anchored membrane proteins with multiple LU-domains characterized so far are predominantly confined to squamous epithelia (i.e., C4.4A), to stratum spinosum, and Haldisin to stratum granulosum under normal homeostatic conditions. Whether Haldisin is a prognostic biomarker for certain epithelial malignancies, like C4.4A and SLURP-1, remains to be explored.  相似文献   

5.
6.
Deamidase of Pup (Dop), the prokaryotic ubiquitin-like protein (Pup)-deconjugating enzyme, is critical for the full virulence of Mycobacterium tuberculosis and is unique to bacteria, providing an ideal target for the development of selective chemotherapies. We used a combination of genetics and chemical biology to characterize the mechanism of depupylation. We identified an aspartate as a potential nucleophile in the active site of Dop, suggesting a novel protease activity to target for inhibitor development.  相似文献   

7.
Na+-dependent chloride cotransporters (NKCC1, NKCC2, and NCC) are activated by phosphorylation to play critical roles in diverse physiological responses, including renal salt balance, hearing, epithelial fluid secretion, and volume regulation. Serine threonine kinase WNK4 (With No K = lysine member 4) and members of the Ste20 kinase family, namely SPAK and OSR1 (Ste20-related proline/alanine-rich kinase, Oxidative stress-responsive kinase) govern phosphorylation. According to present understanding, WNK4 phosphorylates key residues within SPAK/OSR1 leading to kinase activation, allowing SPAK/OSR1 to bind to and phosphorylate NKCC1, NKCC2, and NCC. Recently, the calcium-binding protein 39 (Cab39) has emerged as a binding partner and enhancer of SPAK/OSR1 activity, facilitating kinase autoactivation and promoting phosphorylation of the cotransporters. In the present study, we provide evidence showing that Cab39 differentially interacts with WNK4 and SPAK/OSR1 to switch the classic two kinase cascade into a signal kinase transduction mechanism. We found that WNK4 in association with Cab39 activates NKCC1 in a SPAK/OSR1-independent manner. We discovered that WNK4 possesses a domain that bears close resemblance to the SPAK/OSR1 C-terminal CCT/PF2 domain, which is required for physical interaction between the Ste20 kinases and the Na+-driven chloride cotransporters. Modeling, yeast two-hybrid, and functional data reveal that this PF2-like domain located downstream of the catalytic domain in WNK4 promotes the direct interaction between the kinase and NKCC1. We conclude that in addition to SPAK and OSR1, WNK4 is able to anchor itself to the N-terminal domain of NKCC1 and to promote cotransporter activation.  相似文献   

8.
The ATPase-driven dimeric molecular Hsp90 (heat shock protein 90) and its cofactor Cdc37 (cell division cycle 37 protein) are crucial to prevent the cellular depletion of many protein kinases. In complex with Hsp90, Cdc37 is thought to bind an important lid structure in the ATPase domain of Hsp90 and inhibit ATP turnover by Hsp90. As different interaction modes have been reported, we were interested in the interaction mechanism of Hsp90 and Cdc37. We find that Cdc37 can bind to one subunit of the Hsp90 dimer. The inhibition of the ATPase activity is caused by a reduction in the closing rate of Hsp90 without obviously bridging the two subunits or affecting nucleotide accessibility to the binding site. Although human Cdc37 binds to the N-terminal domain of Hsp90, nematodal Cdc37 preferentially interacts with the middle domain of CeHsp90 and hHsp90, exposing two Cdc37 interaction sites. A previously unreported site in CeCdc37 is utilized for the middle domain interaction. Dephosphorylation of CeCdc37 by the Hsp90-associated phosphatase PPH-5, a step required during the kinase activation process, proceeds normally, even if only the new interaction site is used. This shows that the second interaction site is also functionally relevant and highlights that Cdc37, similar to the Hsp90 cofactors Sti1 and Aha1, may utilize two different attachment sites to restrict the conformational freedom and the ATP turnover of Hsp90.  相似文献   

9.
Ubiquitin pathway E3 ligases are an important component conferring specificity and regulation in ubiquitin attachment to substrate proteins. The Arabidopsis thaliana RING (Really Interesting New Gene) domain-containing proteins BRIZ1 and BRIZ2 are essential for normal seed germination and post-germination growth. Loss of either BRIZ1 (At2g42160) or BRIZ2 (At2g26000) results in a severe phenotype. Heterozygous parents produce progeny that segregate 3:1 for wild-type:growth-arrested seedlings. Homozygous T-DNA insertion lines are recovered for BRIZ1 and BRIZ2 after introduction of a transgene containing the respective coding sequence, demonstrating that disruption of BRIZ1 or BRIZ2 in the T-DNA insertion lines is responsible for the observed phenotype. Both proteins have multiple predicted domains in addition to the RING domain as follows: a BRAP2 (BRCA1-Associated Protein 2), a ZnF UBP (Zinc Finger Ubiquitin Binding protein), and a coiled-coil domain. In vitro, both BRIZ1 and BRIZ2 are active as E3 ligases but only BRIZ2 binds ubiquitin. In vitro synthesized and purified recombinant BRIZ1 and BRIZ2 preferentially form hetero-oligomers rather than homo-oligomers, and the coiled-coil domain is necessary and sufficient for this interaction. BRIZ1 and BRIZ2 co-purify after expression in tobacco leaves, which also requires the coiled-coil domain. BRIZ1 and BRIZ2 coding regions with substitutions in the RING domain are inactive in vitro and, after introduction, fail to complement their respective mutant lines. In our current model, BRIZ1 and BRIZ2 together are required for formation of a functional ubiquitin E3 ligase in vivo, and this complex is required for germination and early seedling growth.  相似文献   

10.
Triggering receptor expressed on myeloid cells-2 (TREM-2) is rapidly emerging as a key regulator of the innate immune response via its regulation of macrophage inflammatory responses. Here we demonstrate that proximal TREM-2 signaling parallels other DAP12-based receptor systems in its use of Syk and Src-family kinases. However, we find that the linker for activation of T cells (LAT) is severely reduced as monocytes differentiate into macrophages and that TREM-2 exclusively uses the linker for activation of B cells (LAB encoded by the gene Lat2−/−) to mediate downstream signaling. LAB is required for TREM-2-mediated activation of Erk1/2 and dampens proximal TREM-2 signals through a novel LAT-independent mechanism resulting in macrophages with proinflammatory properties. Thus, Lat2−/− macrophages have increased TREM-2-induced proximal phosphorylation, and lipopolysaccharide stimulation of these cells leads to increased interleukin-10 (IL-10) and decreased IL-12p40 production relative to wild type cells. Together these data identify LAB as a critical, LAT-independent regulator of TREM-2 signaling and macrophage development capable of controlling subsequent inflammatory responses.  相似文献   

11.
Murine hepatitis virus (MHV) has long served as a model system for the study of coronaviruses. Non-structural protein 3 (nsp3) is the largest nsp in the coronavirus genome, and it contains multiple functional domains that are required for coronavirus replication. Despite the numerous functional studies on MHV and its nsp3 domain, the structure of only one domain in nsp3, the small ubiquitin-like domain 1 (Ubl1), has been determined. We report here the x-ray structure of three tandemly linked domains of MHV nsp3, including the papain-like protease 2 (PLP2) catalytic domain, the ubiquitin-like domain 2 (Ubl2), and a third domain that we call the DPUP (domain preceding Ubl2 and PLP2) domain. DPUP has close structural similarity to the severe acute respiratory syndrome coronavirus unique domain C (SUD-C), suggesting that this domain may not be unique to the severe acute respiratory syndrome coronavirus. The PLP2 catalytic domain was found to have both deubiquitinating and deISGylating isopeptidase activities in addition to proteolytic activity. A computationally derived model of MHV PLP2 bound to ubiquitin was generated, and the potential interactions between ubiquitin and PLP2 were probed by site-directed mutagenesis. These studies extend substantially our structural knowledge of MHV nsp3, providing a platform for further investigation of the role of nsp3 domains in MHV viral replication.  相似文献   

12.
Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program.  相似文献   

13.
The maintenance of endoplasmic reticulum (ER) homeostasis is a critical aspect of determining cell fate and requires a properly functioning unfolded protein response (UPR). We have discovered a previously unknown role of a post-translational modification termed adenylylation/AMPylation in regulating signal transduction events during UPR induction. A family of enzymes, defined by the presence of a Fic (filamentation induced by cAMP) domain, catalyzes this adenylylation reaction. The human genome encodes a single Fic protein, called HYPE (Huntingtin yeast interacting protein E), with adenylyltransferase activity but unknown physiological target(s). Here, we demonstrate that HYPE localizes to the lumen of the endoplasmic reticulum via its hydrophobic N terminus and adenylylates the ER molecular chaperone, BiP, at Ser-365 and Thr-366. BiP functions as a sentinel for protein misfolding and maintains ER homeostasis. We found that adenylylation enhances BiP''s ATPase activity, which is required for refolding misfolded proteins while coping with ER stress. Accordingly, HYPE expression levels increase upon stress. Furthermore, siRNA-mediated knockdown of HYPE prevents the induction of an unfolded protein response. Thus, we identify HYPE as a new UPR regulator and provide the first functional data for Fic-mediated adenylylation in mammalian signaling.  相似文献   

14.
Poly adenosine diphosphate-ribose polymerase-1 (PARP-1) is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N) stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR), and formation of the soluble 2nd messenger monomeric adenosine diphosphate-ribose (mADPR). Previous studies have delineated specific roles for several of PARP-1′s structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1′s BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.  相似文献   

15.
Nrf2 plays a critical role in the regulation of cellular oxidative stress. MEK-ERK activation has been shown to be one of the major pathways resulting in the activation of Nrf2 and induction of Nrf2 downstream targets, including phase II detoxifying/antioxidant genes in response to oxidative stress and xenobiotics. In this study, IQGAP1 (IQ motif-containing GTPase-activating protein 1), a new Nrf2 interaction partner that we have published previously, was found to modulate MEK-ERK-mediated Nrf2 activation and induction of phase II detoxifying/antioxidant genes. Nrf2 binds directly to the IQ domain (amino acids 699–905) of IQGAP1. Knockdown of IQGAP1 significantly attenuated phenethyl isothiocyanate- or MEK-mediated activation of the MEK-ERK-Nrf2 pathway. Knockdown of IQGAP1 also attenuated MEK-mediated increased stability of Nrf2, which in turn was associated with a decrease in the nuclear translocation of Nrf2 and a decrease in the expression of phase II detoxifying/antioxidant genes. In the aggregate, these results suggest that IQGAP1 may play an important role in the MEK-ERK-Nrf2 signaling pathway.  相似文献   

16.
The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements.  相似文献   

17.
18.
Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.  相似文献   

19.
A disintegrin and metalloprotease 17 (ADAM17) is a major sheddase involved in the regulation of a wide range of biological processes. Key substrates of ADAM17 are the IL-6 receptor (IL-6R) and TNF-α. The extracellular region of ADAM17 consists of a prodomain, a catalytic domain, a disintegrin domain, and a membrane-proximal domain as well as a small stalk region. This study demonstrates that this juxtamembrane segment is highly conserved, α-helical, and involved in IL-6R binding. This process is regulated by the structure of the preceding membrane-proximal domain, which acts as molecular switch of ADAM17 activity operated by a protein-disulfide isomerase. Hence, we have termed the conserved stalk region “Conserved ADAM seventeen dynamic interaction sequence” (CANDIS). Finally, we identified the region in IL-6R that binds to CANDIS. In contrast to the type I transmembrane proteins, the IL-6R, and IL-1RII, CANDIS does not bind the type II transmembrane protein TNF-α, demonstrating fundamental differences in the respective shedding by ADAM17.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号