首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基因组编辑技术能够实现基因组的精确修饰和改造,是后基因组时代研究基因功能和遗传信息的主要手段。传统的基因打靶技术通过低效率的细胞自发同源重组实现目的基因的定点修饰。真核细胞中DNA双链断裂介导的同源重组效率远高于自发同源重组,利用人工核酸内切酶特异性地在基因组靶序列处引入双链断裂,通过提供适当形式的、含有一定长度同源臂的供体DNA,能够实现相对高效的基因组靶向编辑。本文系统总结了环状质粒、线性化质粒、聚合酶链式反应产物及单链寡聚脱氧核苷酸4种类型的供体DNA在基因组精确编辑研究中的应用及候选原则,以期为以后相关研究中供体DNA的选择、设计提供参考和借鉴。  相似文献   

2.
基因组编辑技术能够实现基因组的精确修饰和改造,是后基因组时代研究基因功能和遗传信息的主要手段。传统的基因打靶技术通过低效率的细胞自发同源重组实现目的基因的定点修饰。真核细胞中DNA双链断裂介导的同源重组效率远高于自发同源重组,利用人工核酸内切酶特异性地在基因组靶序列处引入双链断裂,通过提供适当形式的、含有一定长度同源臂的供体DNA,能够实现相对高效的基因组靶向编辑。本文系统总结了环状质粒、线性化质粒、聚合酶链式反应产物及单链寡聚脱氧核苷酸4种类型的供体DNA在基因组精确编辑研究中的应用及候选原则,以期为以后相关研究中供体DNA的选择、设计提供参考和借鉴。  相似文献   

3.
CRISPR系统具有精确识别及剪切特异性DNA序列功能而被开发成一种高效的基因编辑工具。它以成本低廉、操作简便、效率高及通用性广等优势,成为新一代最具代表性的基因编辑技术。在应用中,CRISPR系统可在特定靶点形成DNA双链断裂,继而诱导同源重组(HDR)或非同源末端连接修复(NHEJ),为基因组定向改造与调控带来了革命性的突破。该文将对近年来生物科学领域中发展迅猛的研究工具CRISPR/Cas系统进行介绍,包括其结构、作用原理、类型及应用等,并重点阐述同源重组或非同源末端连接修复途径介导的基因定向编辑技术及应用。  相似文献   

4.
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9)是第三代基因组编辑技术。在sgRNA引导下,Cas9核酸内切酶作用于特定基因组序列,产生DNA双链断裂(double-strandedbreaks,DSBs),利用同源定向修复(homology-directedrepair,HDR)可实现对靶基因的特异性基因敲除(knock-out)或敲入(knock-in)。传统的技术方案将CRISPR/Cas9技术与Cre/loxP或FLP/FRT系统联用,可实现高效的基因打靶,也易于移除打靶过程中引入的筛选标记。然而,筛选标记移除过程中会在基因组中残留34个碱基的标签序列。因此,对基因组进行精确编辑的同时不引入无关序列仍有一定难度。在人工诱导多能干细胞(induced pluripotent stem cells, iPSCs)的基因组编辑中,CRISPR/Cas9技术和piggyBac转座酶联用的两步法策略能够实现这一目标:首先运用CRISPR/Cas9技术,利用同源定向修复原理引入基因突变及筛选标记,然后利用piggyBac转座酶将筛选标记精确移除。借鉴该方法的技术原理,本研究对果蝇(Drosophila melanogaster)CG4894基因进行了无缝编辑(seamless genome editing),成功将该基因第18外显子上第21位的酪氨酸(tyrosine,Y)突变为半胱氨酸(cysteine,C),且测序结果显示基因组中除设计位点之外并无其他外源序列残留。CRISPR/Cas9技术和piggyBac转座酶联用策略为果蝇基因组的精确编辑提供了更多选择。  相似文献   

5.
锌指核酸酶(zinc finger nucleases,ZFNs)由3到4个锌指结构(zinc fingers,ZFs)和FokⅠ核酸内切酶的剪切结构域组成。锌指核酸酶(ZFNs)通过锌指结构(ZFs)与特异核酸位点结合,再利用FokⅠ的酶切作用切割DNA,引起特异位点DNA双链断裂(double strand break,DSB)。DNA双链断裂可以通过非同源末端连接(non-homologous end joining,NHEJ) 或同源重组(homologous recombination,HR)来修复。在修复过程中实现对基因组DNA的靶向修饰。介绍了锌指核酸酶结构、人工构建途径,作用机理和试验步骤,重点综述了锌指核酸酶技术在植物基因工程的应用。  相似文献   

6.
正CRISPR/Cas9基因编辑系统因其高效、廉价、简单、通用等特点,引发了基因编辑领域的革命.但是,在植物基因组上进行定点突变,依然困难重重.目前的技术路线是,将含有突变的DNA模板通过修复Cas9产生的DNA双链断裂的方式整合到植物基因组中,从而实现目标区域中的点突变.整合机制包括同源末端修复~([1])或非同源末端修复~([2])的两种方式.但是,DNA模板整合到目标区域的效率极低,这是在植物基因组中  相似文献   

7.
吴仲胜  高誉  杜勇涛  党颂  何康敏 《遗传》2023,(2):165-175
CRISPR-Cas9是目前广泛应用的基因编辑技术,可对目的基因进行高效精准编辑,快速实现目的基因的敲除或敲入。Cas9蛋白在sgRNA引导下对靶序列进行剪切并造成DNA双链断裂,在与剪切位点两端同源的DNA模板序列存在时,可通过同源重组修复方式引入外源序列,实现荧光蛋白或其他标签在基因组上的精准敲入,进而实现对内源蛋白进行荧光标签的融合标记。通过基因编辑技术对内源目的蛋白进行标记,可避免由于过表达造成蛋白质定位、动力学或功能等的潜在影响,可显著提升细胞成像实验的稳定性和可重复性。本文重点介绍了利用CRISPR-Cas9基因编辑系统对目的蛋白进行荧光蛋白或自标记蛋白标签标记的方法与操作流程,为构建内源蛋白荧光标记的哺乳动物细胞系提供参考。  相似文献   

8.
植物基因组编辑及衍生技术最新研究进展   总被引:2,自引:0,他引:2  
单奇伟  高彩霞 《遗传》2015,37(10):953-973
  相似文献   

9.
近年来,CRISPR基因编辑及衍生技术迅速发展,在生命科学、生物医学研究以及动植物育种领域得到了广泛应用。基于DNA双链断裂(double-stranded break, DSB)同源指导修复(homology-directed repair, HDR)机制的基因敲入和点编辑是基因编辑的重要策略,但效率偏低亟待提高。本文提出了驱动供体DNA富集至DSB处以提高HDR效率的新策略,并设计了一套CRISPR/Cas9-Gal4BD供体适配基因编辑系统(donoradapting system, DAS)。该系统主要利用Gal4 DNA结合域(Gal4 binding domain, Gal4BD)作为配体蛋白与Cas9融合表达,将Gal4BD结合序列(Gal4 binding sequence, Gal4BS)作为受体序列与双链DNA (double-stranded DNA, dsDNA)供体结合,以期提高HDR效率。使用HEK293T-HDR.GFP报告细胞系的初步研究结果表明当dsDNA供体同源臂在一定长度(100~60 bp)时该系统能够提高HDR效率2~4倍。进一步的优化研究表明...  相似文献   

10.
基因组编辑技术在植物基因功能鉴定及作物育种中的应用   总被引:1,自引:0,他引:1  
周想春  邢永忠 《遗传》2016,38(3):227-242
  相似文献   

11.
主编导读     
《生物工程学报》2021,(7):2191-2196
<正>本期主编导读主题:碱基编辑、脑细胞芯片、超高通量筛选、微量磷酸化蛋白质富集等技术方法,以及疫苗抗体、多肽药物、治疗用酶、生物材料、生物合成等领域的新进展。1技术方法以CRISPR/Cas9基因编辑系统为代表的基因组编辑技术可以显著提高基因敲除及定点修饰的效率。传统的CRISPR/Cas9技术通过在靶点处产生DNA双链断裂,诱发细胞内的同源重组和非同源末端连接修复途径,进而实现对基因组DNA的定点敲除、替换、插入等修饰。  相似文献   

12.
传统的基因组编辑技术是基于胚胎干细胞和同源重组实现生物基因组定向改造,但是该技术打靶效率低,严重制约了生命科学以及医学的研究.因此,研究新的基因组编辑技术十分重要.人工核酸酶介导的基因组编辑技术是通过特异性识别靶位点造成DNA双链断裂,引起细胞内源性的修复机制实现靶基因的修饰.与传统的基因组编辑技术相比,人工核酸酶技术打靶效率高,这对于基因功能的研究、构建人类疾病动物模型以及探索新型疾病治疗方案有着重要的意义.人工核酸酶技术有3种类型:锌指核酸酶(ZFN)、类转录激活因子核酸酶(TALEN)及规律成簇的间隔短回文重复序列(CRISPR).本文将对以上3种人工核酸酶技术的原理以及在生命科学和医学研究的应用进行综述.  相似文献   

13.
CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用   总被引:1,自引:0,他引:1  
殷利眷  胡斯奇  郭斐 《遗传》2015,37(5):412-418
CRISPR-Cas9基因编辑技术是基于细菌或古细菌CRISPR介导的获得性免疫系统衍生而来,由一段RNA通过碱基互补配对识别DNA,指导Cas9核酸酶切割识别的双链DNA,诱发同源重组或非同源末端链接,进而实现在目的DNA上进行编辑。病毒通过特异的受体侵染细胞,其基因组在细胞内发生复制、转录、翻译等过程完成其生活周期,某些DNA病毒或逆转录病毒基因组会整合到宿主基因组中。基因治疗是病毒感染疾病治疗的新趋势。因此,基因编辑技术在持续感染的病毒或潜伏感染病毒疾病治疗中具有重大的潜在意义。文章主要从CRISPR-Cas9作用机制以及在病毒感染疾病治疗中的应用等方面进行了综述。  相似文献   

14.
羊乳是一种理想的牛乳过敏症患者的替代乳品,TALEN和CRISPR/Cas9基因编辑技术是羊乳"人源化"改造的两大利器,能够与核酸内切酶相结合,特异性识别并结合生物体基因位点,切割DNA双链,导致双链断裂.通过同源重组(homologous recombination,HR)或非同源末端连接(non-homologous end joining,NHEJ),可以对哺乳动物乳蛋白基因或其他生物体基因组进行定向精确修饰,具有简单、高效、精准、定向等特点,是近年来一种新兴的生物技术,被广泛应用于基因工程、动植物遗传育种及其他生物医学各领域.但在羊乳"人源化"改造中的应用综述研究尚未见报道,故本文主要对这两种基因编辑技术的基本结构与作用机理、发展历史、羊乳基因编辑研究进展、本课题组研究现状及展望进行综述,以期为相关研究提供参考.  相似文献   

15.
CRISPR/Cas9系统在疾病研究和治疗中的应用   总被引:1,自引:0,他引:1  
基因组编辑技术(Genome editing technology)是一种通过人工手段在基因组水平对DNA序列进行改造的遗传操作技术,包括特定DNA片段的插入、敲除、替换和点突变.其中,依赖核酸酶的基因组编辑技术的基本原理是在基因组的特定位置产生双链DNA断裂(Double-stranded break,DSB)后通过...  相似文献   

16.
作为新型的基因组编辑工具,碱基编辑技术结合了CRISPR/Cas系统的定位功能和碱基脱氨酶的编辑功能,可实现特定位点的碱基突变,具有不产生双链DNA断裂,无需外源模板且不依赖染色体DNA同源重组的优势.目前,研究者们已在重要的工业生产菌株谷氨酸棒杆菌(Corynebacterium glutamicum)中开发了多种碱...  相似文献   

17.
ku基因介导的非同源末端连接(NHEJ)途径是DNA双链断裂(DSBs)的一种修复机制,它不依赖于同源重组,且通过与之竞争而削弱同源重组。由于ku基因在生物进化过程中的高度保守性,其功能在很多微生物中已经得到研究,尤其在丝状真菌中,将ku基因敲除,在NHEJ途径缺陷的背景下,同源重组发挥主要作用,基因敲除的频率大为提高,从而方便了对基因功能的研究。  相似文献   

18.
孙昊  杨辉 《生命科学》2015,(1):36-44
基因修饰小鼠在研究人类疾病致病机理和治疗手段中起到了关键作用。传统的小鼠基因组编辑使用胚胎干细胞(ES细胞),虽然可以对内源基因进行精细的修改,但是复杂、繁琐并且耗时。近几年发展的人工核酸酶可以在靶位点切割DNA双链,诱发细胞内源性修复机制,发生同源重组修复或非同源末端连接,从而提高了基因组编辑的效率。从ZFN到TALEN再到CRISPR/Cas9技术,新型基因组编辑技术正以惊人的速度渗入到生命科学的各项研究工作中。将对新型基因组编辑技术进行介绍,着重阐述CRISPR/Cas9系统介导的基因编辑技术在基因修饰小鼠中的应用,比较该系统与其他方法的优越性和不足,并对该系统进行展望。  相似文献   

19.
20.
基因修饰技术研究进展   总被引:4,自引:0,他引:4  
基因修饰技术是用于基因组定点改造的分子工具,目前主要有锌指核酸酶(ZFN)技术、转录激活子样效应物核酸酶(TALEN)技术和CRISPR-Cas核酸酶(CRISPR-Cas)技术。这些核酸酶都可以在DNA靶位点产生双链断裂(DSB),诱发细胞内源性的修复机制,激活体内非同源末端连接(NHEJ)或同源重组(HR)两种不同的修复机制,从而实现内源基因的敲除或外源基因的定点敲入。近年来,基因修饰技术已成功应用到细菌、酵母、人类细胞、果蝇、斑马鱼、小鼠、大鼠、家畜、食蟹猴、拟南芥、水稻、烟草、玉米、高粱、小麦和大麦等多种生物,显示了其强大的基因编辑优势。特别是新近出现的CRISPR-Cas9技术,降低了成本,使基因编辑变得简洁、高效和易于操作,得到了很多研究人员的关注。本文系统介绍了以上3种技术的原理及最新研究进展,并对未来的研究和应用做出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号