共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Swimming against the tide: resilience of a riverine turtle to recurrent extreme environmental events
Abigail M. Jergenson David A. W. Miller Lorin A. Neuman-Lee Daniel A. Warner Fredric J. Janzen 《Biology letters》2014,10(3)
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change. 相似文献
3.
Sex in many organisms is a dichotomous phenotype--individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW-XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits. 相似文献
4.
Reproducing lizards modify sex allocation in response to operational sex ratios 总被引:1,自引:0,他引:1
下载免费PDF全文

Sex-allocation theory suggests that selection may favour maternal skewing of offspring sex ratios if the fitness return from producing a son differs from that for producing a daughter. The operational sex ratio (OSR) may provide information about this potential fitness differential. Previous studies have reached conflicting conclusions about whether or not OSR influences sex allocation in viviparous lizards. Our experimental trials with oviparous lizards (Amphibolurus muricatus) showed that OSR influenced offspring sex ratios, but in a direction opposite to that predicted by theory: females kept in male-biased enclosures overproduced sons rather than daughters (i.e. overproduced the more abundant sex). This response may enhance fitness if local OSRs predict survival probabilities of offspring of each sex, rather than the intensity of sexual competition. 相似文献
5.
Suzanne E. McGaugh Lisa E. Schwanz Rachel M. Bowden Julie E. Gonzalez Fredric J. Janzen 《Proceedings. Biological sciences / The Royal Society》2010,277(1685):1219-1226
Nesting behaviour is critical for reproductive success in oviparous organisms with no parental care. In organisms where sex is determined by incubation temperature, nesting behaviour may be a prime target of selection in response to unbalanced sex ratios. To produce an evolutionary change in response to sex-ratio selection, components of nesting behaviour must be heritable. We estimated the field heritability of two key components of nesting behaviour in a population of painted turtles (Chrysemys picta) with temperature-dependent sex determination by applying the ‘animal model’ to a pedigree reconstructed from genotype data. We obtained estimates of low to non-detectable heritability using repeated records across all environments. We then determined environment-specific heritability by grouping records with similar temperatures for the winter preceding the nesting season, a variable known to be highly associated with our two traits of interest, nest vegetation cover and Julian date of nesting. The heritability estimates of nest vegetation cover and Julian date of nesting were qualitatively highest and significant, or nearly so, after hot winters. Additive genetic variance for these traits was not detectable after cold winters. Our analysis suggests that the potential for evolutionary change of nesting behaviour may be dependent on the thermal conditions of the preceding winter, a season that is predicted to be especially subject to climate change. 相似文献
6.
Quantifying the degree to which sex determination depends on the environment can yield insight into the evolution, ecological dynamics, and functional aspects of sex determination. In temperature-dependent sex determination (TSD), theory often predicts a complete dependence of sex on temperature, with a switch-like reaction norm. However, empirical data suggest more shallow relationships between sex and temperature. Here, we demonstrate the usefulness of an index, mutual information (MI), to reflect the degree of temperature dependence in sex. MI depends on both the shape of a reaction norm and the natural temperature variation, thus providing a measure of TSD that is ecologically dependent. We demonstrate that increased lifespan and decreased environmental fluctuation predict reaction norms with high MI (switch-like). However, mutation and weaker selection on sex-specific performance reduce average MI in a population, suggesting that mutation-selection balance can resolve some of the conflict between theoretical predictions of individual-based optimality and population-based empirical results. The MI index allows clear comparison of TSD across life histories and habitats and reveals functional similarities between reaction norms that may appear different. The model provides testable predictions for TSD across populations, namely that MI should increase with lifespan and decrease with historical environmental fluctuations. 相似文献
7.
Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the ‘animal model'' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30 °C), but not at a temperature that produces a male-biased sex ratio (32.5 °C). Conversely, dominance variance was significant at the male-biased temperature (32.5 °C), but not at the female-biased temperature (30 °C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD. 相似文献
8.
9.
Wright LI Stokes KL Fuller WJ Godley BJ McGowan A Snape R Tregenza T Broderick AC 《Proceedings. Biological sciences / The Royal Society》2012,279(1736):2122-2127
For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle (Chelonia mydas), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2-4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened. 相似文献
10.
J. Sean Doody Enzo Guarino Arthur Georges Ben Corey Glen Murray Michael Ewert 《Evolutionary ecology》2006,20(4):307-330
Theoretical models suggest that in changing environments natural selection on two traits, maternal nesting behaviour and pivotal temperatures (those that divide the sexes) is important for maintaining viable offspring sex ratios in species with environmental sex determination (ESD). Empirical evidence, however, is lacking. In this paper, we provide such evidence from a study of clinal variation in four sex-determining traits (maternal nesting behaviour, pivotal temperatures, nesting phenology, and nest depth) in Physignathus lesueurii, a wide-ranging ESD lizard inhabiting eastern Australia. Despite marked differences in air and soil temperatures across our five study sites spanning 19° latitude and 1200 m in elevation, nest temperatures did not differ significantly among sites. Lizards compensated for climatic differences chiefly by selecting more open nest sites with higher incident radiation at cooler sites. Clinal variation in the onset of nesting also compensated for climatic differences, but to a lesser extent. There was no evidence of compensation through pivotal temperatures or nest depth. More broadly, our results extend to the egg stage the life history prediction that behaviour is the chief compensatory mechanism for climatic differences experienced by species spanning environmental extremes. Furthermore, our study was unique in revealing that nest site choice influenced mainly the daily range in nest temperatures, rather than mean temperatures, in a shallow-nesting reptile. Finally, indirect evidence suggests that the cue used by nesting lizards was radiation or temperature (through basking or assessing substrate temperatures), not visual detection of canopy openness. We conclude that maternal nesting behaviour and nesting phenology are traits subject to sex ratio selection in P. lesueurii, and thus, must be considered among the repertoire of ESD species for responding to climate change. 相似文献
11.
Although variation in population sex ratios is predicted to increase the extinction rate of clades with environmental sex determination (ESD), ESD is still seen in a wide array of natural systems. It is unclear how this common sex-determining system has persisted despite this inherent disadvantage associated with ESD. We use simulation modelling to examine the effect of the sex ratio variance caused by ESD on population colonization and establishment. We find that an accelerating function of establishment success on initial population sex ratio favours a system that produces variance in sex ratios over one that consistently produces even sex ratios. This sex ratio variance causes ESD to be favoured over genetic sex determination, even when the mean global sex ratio under both sex-determining systems is the same. Data from ESD populations suggest that the increase in population establishment can more than offset the increased risk of extinction associated with temporal fluctuations in the sex ratio. These findings demonstrate that selection in natural systems can favour increased variance in a trait, irrespective of the mean trait value. Our results indicate that sex ratio variation may provide an advantage to species with ESD, and may help explain the widespread existence of this sex-determining system. 相似文献
12.
First fossil gravid turtle provides insight into the evolution of reproductive traits in turtles
下载免费PDF全文

Here we report on the first discovery of shelled eggs inside the body cavity of a fossil turtle and on an isolated egg clutch, both referable to the Cretaceous turtle Adocus. These discoveries provide a unique opportunity to gain insight into the reproductive traits of an extinct turtle and to understand the evolution of such traits among living turtles. The gravid adult and egg clutch indicate that Adocus laid large clutches of rigid-shelled spherical eggs and established their nests near rivers, traits that are shared by its closest living relatives, the soft-shelled turtles. Adocus eggshell, however, was probably more rigid than that of living turtles, based on its great thickness and structure, features that may represent unique adaptations to intense predation or to arid nest environments. In light of the reproductive traits observed in Adocus, the distribution of reproductive traits among turtles reveals that large clutches of rigid-shelled eggs are primitive for hidden-necked turtles (cryptodirans) and that spherical eggs may have evolved independently within this group. 相似文献
13.
Jean-Baptiste Leducq Guillaume Charron Pedram Samani Alexandre K. Dubé Kayla Sylvester Brielle James Pedro Almeida José Paulo Sampaio Chris Todd Hittinger Graham Bell Christian R. Landry 《Proceedings. Biological sciences / The Royal Society》2014,281(1777)
Exploring the ability of organisms to locally adapt is critical for determining the outcome of rapid climate changes, yet few studies have addressed this question in microorganisms. We investigated the role of a heterogeneous climate on adaptation of North American populations of the wild yeast Saccharomyces paradoxus. We found abundant among-strain variation for fitness components across a range of temperatures, but this variation was only partially explained by climatic variation in the distribution area. Most of fitness variation was explained by the divergence of genetically distinct groups, distributed along a north–south cline, suggesting that these groups have adapted to distinct climatic conditions. Within-group fitness components were correlated with climatic conditions, illustrating that even ubiquitous microorganisms locally adapt and harbour standing genetic variation for climate-related traits. Our results suggest that global climatic changes could lead to adaptation to new conditions within groups, or changes in their geographical distributions. 相似文献
14.
Jessica López-Correa Miguel Ángel Porta-Gándara Joaquín Gutiérrez Victor M. Gómez–Muñoz 《Journal of thermal biology》2010
A novel sea turtle egg incubator was developed in which the heating element is placed above the clutch, which more closely simulates solar heating in nature. An electronic thermometer in conjunction with a thermostat located in sand beneath a heater plate was used to obtain the desired temperature in the placed eggs, as compared to previous methods of controlling global temperature within the interior of a chamber. To test the new incubator, Lepidochelys olivacea eggs were incubated under different thermal conditions in order to identify the temperature-dependent sex determination (TSD) period more precisely. Four incubation experiments were designed to test the performance of the incubator where the temperature was lowered from 32 to 28 °C during 60 h and then reestablished at 32 °C until hatching occurred. A significant mean hatching success rate of 89.6% was obtained for all the experiments. The main result from these preliminary findings was that the sex determination period to produce males was reduced from 15 (days 15–30) to eight days (days 19–27). Overall, the incubator provides precise control and simulates a natural thermal environment that may improve control of TSD in sea turtles. 相似文献
15.
María José Arezo Nicolás Papa Verónica Guttierrez Graciela García Nibia Berois 《Genetics and molecular biology》2014,37(2):364-374
Evolution of sex determination and differentiation in fishes involves a broad range of sex strategies (hermaphroditism, gonochorism, unisexuality, environmental and genetic sex determination). Annual fishes inhabit temporary ponds that dry out during the dry season when adults die. The embryos exhibit an atypical developmental pattern and remain buried in the bottom mud until the next rainy season. To elucidate genomic factors involved in the sex determination in annual fish, we explored the presence of a candidate sex-specific gene related to the cascade network in Austrolebias charrua. All phylogenetic analyses showed a high posterior probability of occurrence for a clade integrated by nuclear sequences (aprox. 900 bp) from both adults (male and female), with partial cDNA fragments of A. charrua from juveniles (male) and the dsx D. melanogaster gene. The expressed fragment was detected from blastula to adulthood stages showing a sexually dimorphic expression pattern. The isolated cDNA sequence is clearly related to dsx D. melanogaster gene and might be located near the top of the sex determination cascade in this species. 相似文献
16.
17.
Evolution of the turtle bauplan: the topological relationship of the scapula relative to the ribcage
The turtle shell and the relationship of the shoulder girdle inside or ‘deep’ to the ribcage have puzzled neontologists and developmental biologists for more than a century. Recent developmental and fossil data indicate that the shoulder girdle indeed lies inside the shell, but anterior to the ribcage. Developmental biologists compare this orientation to that found in the model organisms mice and chickens, whose scapula lies laterally on top of the ribcage. We analyse the topological relationship of the shoulder girdle relative to the ribcage within a broader phylogenetic context and determine that the condition found in turtles is also found in amphibians, monotreme mammals and lepidosaurs. A vertical scapula anterior to the thoracic ribcage is therefore inferred to be the basal amniote condition and indicates that the condition found in therian mammals and archosaurs (which includes both developmental model organisms: chickens and mice) is derived and not appropriate for studying the developmental origin of the turtle shell. Instead, among amniotes, either monotreme mammals or lepidosaurs should be used. 相似文献
18.
Environmental sex determination has been documented in a variety of organisms for many decades and the adaptive significance of this unusual sex-determining mechanism has been clarified empirically in most cases. In contrast, temperature-dependent sex determination (TSD) in amniote vertebrates, first noted 40 years ago in a lizard, has defied a general satisfactory evolutionary explanation despite considerable research effort. After briefly reviewing relevant theory and prior empirical work, we draw attention to recent comparative analyses that illuminate the evolutionary history of TSD in amniote vertebrates and point to clear avenues for future research on this challenging topic. To that end, we then highlight the latest empirical findings in lizards and turtles, as well as promising experimental results from a model organism, that portend an exciting future of progress in finally elucidating the evolutionary cause(s) and significance of TSD. 相似文献
19.