首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shifts in resource use may be an important mechanism by which organisms can adjust to novel environmental conditions, such as those imposed by climate change. However, for such shifts to be possible, environmental space must exist into which organisms can move. Habitat that ensures successful survival and reproduction is one such critical resource. We studied resource selection of shade cover over nest sites by painted turtles in populations in Illinois (center of range) and New Mexico (southern edge of range). We targeted this habitat feature because shade can influence hatching success and offspring phenotype (including sex in the study species) by affecting nest microenvironments. We found that while turtles in both populations selected nest sites that were shadier than average available sites, overall resource selection differed between the populations. This disparity may have been due to differences in structure of vegetation that provides shade at each site, because areas with high shade cover in New Mexico (low dense thickets) were much more difficult for turtles to access than those in Illinois (dense tree canopy cover). Further, shade cover predicted different parameters of incubation regime at each site, suggesting that turtles must assess dissimilar components of shade cover in order to choose nest sites and predict their future incubation regimes. Our results suggest that shade cover within nesting areas is a key component of painted turtle habitat, and that accessible, highly-shaded nest sites may be limited at the New Mexico site. Maintaining a range of shade cover from which turtles can select nest sites would permit plasticity in nest-site choice to be expressed, which may be important in preventing sex ratio skews due to climate change.  相似文献   

2.
3.
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change.  相似文献   

4.
Sex in many organisms is a dichotomous phenotype--individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW-XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.  相似文献   

5.
Sex-allocation theory suggests that selection may favour maternal skewing of offspring sex ratios if the fitness return from producing a son differs from that for producing a daughter. The operational sex ratio (OSR) may provide information about this potential fitness differential. Previous studies have reached conflicting conclusions about whether or not OSR influences sex allocation in viviparous lizards. Our experimental trials with oviparous lizards (Amphibolurus muricatus) showed that OSR influenced offspring sex ratios, but in a direction opposite to that predicted by theory: females kept in male-biased enclosures overproduced sons rather than daughters (i.e. overproduced the more abundant sex). This response may enhance fitness if local OSRs predict survival probabilities of offspring of each sex, rather than the intensity of sexual competition.  相似文献   

6.
Nesting behaviour is critical for reproductive success in oviparous organisms with no parental care. In organisms where sex is determined by incubation temperature, nesting behaviour may be a prime target of selection in response to unbalanced sex ratios. To produce an evolutionary change in response to sex-ratio selection, components of nesting behaviour must be heritable. We estimated the field heritability of two key components of nesting behaviour in a population of painted turtles (Chrysemys picta) with temperature-dependent sex determination by applying the ‘animal model’ to a pedigree reconstructed from genotype data. We obtained estimates of low to non-detectable heritability using repeated records across all environments. We then determined environment-specific heritability by grouping records with similar temperatures for the winter preceding the nesting season, a variable known to be highly associated with our two traits of interest, nest vegetation cover and Julian date of nesting. The heritability estimates of nest vegetation cover and Julian date of nesting were qualitatively highest and significant, or nearly so, after hot winters. Additive genetic variance for these traits was not detectable after cold winters. Our analysis suggests that the potential for evolutionary change of nesting behaviour may be dependent on the thermal conditions of the preceding winter, a season that is predicted to be especially subject to climate change.  相似文献   

7.
Quantifying the degree to which sex determination depends on the environment can yield insight into the evolution, ecological dynamics, and functional aspects of sex determination. In temperature-dependent sex determination (TSD), theory often predicts a complete dependence of sex on temperature, with a switch-like reaction norm. However, empirical data suggest more shallow relationships between sex and temperature. Here, we demonstrate the usefulness of an index, mutual information (MI), to reflect the degree of temperature dependence in sex. MI depends on both the shape of a reaction norm and the natural temperature variation, thus providing a measure of TSD that is ecologically dependent. We demonstrate that increased lifespan and decreased environmental fluctuation predict reaction norms with high MI (switch-like). However, mutation and weaker selection on sex-specific performance reduce average MI in a population, suggesting that mutation-selection balance can resolve some of the conflict between theoretical predictions of individual-based optimality and population-based empirical results. The MI index allows clear comparison of TSD across life histories and habitats and reveals functional similarities between reaction norms that may appear different. The model provides testable predictions for TSD across populations, namely that MI should increase with lifespan and decrease with historical environmental fluctuations.  相似文献   

8.
9.
T Rhen  A Schroeder  J T Sakata  V Huang  D Crews 《Heredity》2011,106(4):649-660
Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the ‘animal model'' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30 °C), but not at a temperature that produces a male-biased sex ratio (32.5 °C). Conversely, dominance variance was significant at the male-biased temperature (32.5 °C), but not at the female-biased temperature (30 °C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD.  相似文献   

10.
11.
Theoretical models suggest that in changing environments natural selection on two traits, maternal nesting behaviour and pivotal temperatures (those that divide the sexes) is important for maintaining viable offspring sex ratios in species with environmental sex determination (ESD). Empirical evidence, however, is lacking. In this paper, we provide such evidence from a study of clinal variation in four sex-determining traits (maternal nesting behaviour, pivotal temperatures, nesting phenology, and nest depth) in Physignathus lesueurii, a wide-ranging ESD lizard inhabiting eastern Australia. Despite marked differences in air and soil temperatures across our five study sites spanning 19° latitude and 1200 m in elevation, nest temperatures did not differ significantly among sites. Lizards compensated for climatic differences chiefly by selecting more open nest sites with higher incident radiation at cooler sites. Clinal variation in the onset of nesting also compensated for climatic differences, but to a lesser extent. There was no evidence of compensation through pivotal temperatures or nest depth. More broadly, our results extend to the egg stage the life history prediction that behaviour is the chief compensatory mechanism for climatic differences experienced by species spanning environmental extremes. Furthermore, our study was unique in revealing that nest site choice influenced mainly the daily range in nest temperatures, rather than mean temperatures, in a shallow-nesting reptile. Finally, indirect evidence suggests that the cue used by nesting lizards was radiation or temperature (through basking or assessing substrate temperatures), not visual detection of canopy openness. We conclude that maternal nesting behaviour and nesting phenology are traits subject to sex ratio selection in P. lesueurii, and thus, must be considered among the repertoire of ESD species for responding to climate change.  相似文献   

12.
For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle (Chelonia mydas), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2-4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened.  相似文献   

13.
Sex is determined genetically in some species (genotypic sex determination, or GSD) and by the environment (environmental sex determination, or ESD) in others. The two systems are generally viewed as incompatible alternatives, but we have found that sex determination in a species of montane lizard ( Bassiana duperreyi , Scincidae) in south-eastern Australia is simultaneously affected by sex chromosomes and incubation temperatures, as well as being related to egg size. This species has strongly heteromorphic sex chromosomes, and yet incubation at thermal regimes characteristic of cool natural nests generates primarily male offspring. We infer that incubation temperatures can over-ride genetically determined sex in this species, providing a unique opportunity to explore these alternative sex-determining systems within a single population.  相似文献   

14.
杜卫国  沈建伟  胡凌君  王磊 《生态学报》2010,30(14):3766-3771
以温度依赖型性别决定(TSD)物种乌龟(Chinemys reevesii)为对象,应用17β-雌二醇和芳香化酶抑制剂Fadrozole处理26、28和30℃条件下孵化的卵,抑制孵化温度对后代性别的作用,获得性别逆转幼体。通过比较幼体形态、游泳能力和生长特征的孵化温度和性别间差异,检验TSD适应意义的Charnov-Bull假设。雌雄幼体的孵化期因孵化温度不同而不同,在26℃条件下,雄性幼体的孵化期长于雌性幼体,而在28和30℃条件下,孵化期则无两性差异。幼体大小与孵化温度和性别有关。低温幼体大于高温幼体,雌性幼体大于雄性幼体。幼体的游泳能力既不受孵化温度的影响,也无两性差异。幼体生长与孵化温度无关,但存在两性差异,雌体生长速度显著快于雄体。Charnov-Bull假设预测,TSD Ia型物种的高温雌体适合度应高于低温雌体,而高温雄体适合度则应低于低温雄体。研究结果与上述预测不符,故不支持该假设。  相似文献   

15.
Although variation in population sex ratios is predicted to increase the extinction rate of clades with environmental sex determination (ESD), ESD is still seen in a wide array of natural systems. It is unclear how this common sex-determining system has persisted despite this inherent disadvantage associated with ESD. We use simulation modelling to examine the effect of the sex ratio variance caused by ESD on population colonization and establishment. We find that an accelerating function of establishment success on initial population sex ratio favours a system that produces variance in sex ratios over one that consistently produces even sex ratios. This sex ratio variance causes ESD to be favoured over genetic sex determination, even when the mean global sex ratio under both sex-determining systems is the same. Data from ESD populations suggest that the increase in population establishment can more than offset the increased risk of extinction associated with temporal fluctuations in the sex ratio. These findings demonstrate that selection in natural systems can favour increased variance in a trait, irrespective of the mean trait value. Our results indicate that sex ratio variation may provide an advantage to species with ESD, and may help explain the widespread existence of this sex-determining system.  相似文献   

16.
Polymorphisms can lead to genetic isolation if there is differential mating success among conspecifics divergent for a trait. Polymorphism for sex‐determining system may fall into this category, given strong selection for the production of viable males and females and the low success of heterogametic hybrids when sex chromosomes differ (Haldane''s rule). Here we investigated whether populations exhibiting polymorphism for sex determination are genetically isolated, using the viviparous snow skink Carinascincus ocellatus. While a comparatively high elevation population has genotypic sex determination, in a lower elevation population there is an additional temperature component to sex determination. Based on 11,107 SNP markers, these populations appear genetically isolated. “Isolation with Migration” analysis also suggests these populations diverged in the absence of gene flow, across a period encompassing multiple Pleistocene glaciations and likely greater geographic proximity of populations. However, further experiments are required to establish whether genetic isolation may be a cause or consequence of differences in sex determination. Given the influence of temperature on sex in one lineage, we also discuss the implications for the persistence of this polymorphism under climate change.  相似文献   

17.
Sex allocation theory predicts that mothers should adjust their sex-specific reproductive investment in relation to the predicted fitness returns from sons versus daughters. Sex allocation theory has proved to be successful in some invertebrate taxa but data on vertebrates often fail to show the predicted shift in sex ratio or sex-specific resource investment. This is likely to be partly explained by simplistic assumptions of vertebrate life-history and mechanistic constraints, but also because the fundamental assumption of sex-specific fitness return on investment is rarely supported by empirical data. In short-lived species, the time of hatching or parturition can have a strong impact on the age and size at maturity. Thus, if selection favors adult sexual-size dimorphism, females can maximize their fitness by adjusting offspring sex over the reproductive season. We show that in mallee dragons, Ctenophorus fordi, date of hatching is positively related to female reproductive output but has little, if any, effect on male reproductive success, suggesting selection for a seasonal shift in offspring sex ratio. We used a combination of field and laboratory data collected over two years to test if female dragons adjust their sex allocation over the season to ensure an adaptive match between time of hatching and offspring sex. Contrary to our predictions, we found no effect of laying date on sex ratio, nor did we find any evidence for within-female between-clutch sex-ratio adjustment. Furthermore, there was no differential resource investment into male and female offspring within or between clutches and sex ratios did not correlate with female condition or any partner traits. Consequently, despite evidence for selection for a seasonal sex-ratio shift, female mallee dragons do not seem to exercise any control over sex determination. The results are discussed in relation to potential constraints on sex-ratio adjustment, alternative selection pressures, and the evolution of temperature-dependent sex determination.  相似文献   

18.
1.
Eulamprus tytmpanum can attain mean selected temperatures achieved in the laboratory under field conditions, but the proportion of time at that temperature is restricted under natural conditions.  相似文献   

19.
Here we report on the first discovery of shelled eggs inside the body cavity of a fossil turtle and on an isolated egg clutch, both referable to the Cretaceous turtle Adocus. These discoveries provide a unique opportunity to gain insight into the reproductive traits of an extinct turtle and to understand the evolution of such traits among living turtles. The gravid adult and egg clutch indicate that Adocus laid large clutches of rigid-shelled spherical eggs and established their nests near rivers, traits that are shared by its closest living relatives, the soft-shelled turtles. Adocus eggshell, however, was probably more rigid than that of living turtles, based on its great thickness and structure, features that may represent unique adaptations to intense predation or to arid nest environments. In light of the reproductive traits observed in Adocus, the distribution of reproductive traits among turtles reveals that large clutches of rigid-shelled eggs are primitive for hidden-necked turtles (cryptodirans) and that spherical eggs may have evolved independently within this group.  相似文献   

20.
This study examined the changes in sex ratios and sex reversal rates in pejerrey Odontesthes bonariensis that occur with the progression of the spawning season in a seminatural setting. Four groups of hatchery-produced pejerrey larvae were stocked in floating cages in La Salada de Monasterio lake (Pampas region), a natural habitat of this species, and reared from hatching beyond gonadal sex determination with minimum human interference. Cage 1 was stocked at the beginning of the spring spawning season and the other cages were stocked with monthly delays until cage 4 in early summer. The genotypic (amhy+, XY/YY; amhy−, XX) and phenotypic (testis, male; ovary, female) sex ratios and proportions of genotype/phenotype mismatched individuals were estimated and their relation to water temperature and daylength during the experiment was analysed by generalized linear modelling. Water temperature varied between 11 and 30.5°C, and daylength duration between 11 h 22 min and 14 h 35 min. Sex genotyping revealed nearly balanced sex ratios of XY/YY (46%–49.1%) and XX (50.9%–54%) fish in cages 2–4 whereas the genotypic sex ratio in cage 1 was clearly biased towards XY/YY fish (60.6%). Phenotypic males ranged from 42% to 54.4% in cages 1–3. Cage 4, in turn, had significantly more phenotypic males (66%). The percentage of XX males (phenotypic male/genotypic female) was 23.1% in cage 1, decreased to a minimum of 5.4% in cage 2 and gradually increased in cages 3 and 4 to a maximum of 40.7% in the latter. The percentages of XY/YY females (phenotypic female/genotypic male) were highest in cage 1 (30%) and decreased progressively in the other cages to a significantly lower value (4.3%) in cage 4. These results generally support the findings of laboratory studies on the effect of temperature on the sex determination of this species and also provide novel evidence of a XX genotype-specific masculinizing effect of short daylength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号