首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Background

Salmonid alphavirus (SAV) is a widespread pathogen in European aquaculture of salmonid fish. Distinct viral subtypes have been suggested based on sequence comparisons and some of these have different geographical distributions. In Norway, only SAV subtype 3 have so far been identified. Little is known about viral mechanisms important for pathogenesis and transmission. Tools for detailed exploration of SAV genomes are therefore needed.

Results

Infectious cDNA clones in which a genome of subtype 3 SAV is under the control of a CMV promoter were constructed. The clones were designed to express proteins that are putatively identical to those previously reported for the SAVH20/03 strain. A polyclonal antiserum was raised against a part of the E2 glycoprotein in order to detect expression of the subgenomic open reading frame (ORF) encoding structural viral proteins. Transfection of the cDNA clone revealed the expression of the E2 protein by IFAT, and in serial passages of the supernatant the presence of infectious recombinant virus was confirmed through RT-PCR, IFAT and the development of a cytopathic effect similar to that seen during infection with wild type SAV. Confirmation that the recovered virus originated from the infectious plasmid was done by sequence identification of an introduced genetic tag. The recombinant virus was infectious also when an additional ORF encoding an EGFP reporter gene under the control of a second subgenomic alphavirus promoter was added. Finally, we used the system to study the effect of selected point mutations on infectivity in Chinook salmon embryo cells. While introduced mutations in nsP2197, nsP3263 and nsP3323 severely reduced infectivity, a serine to proline mutation in E2206 appeared to enhance the virus titer production.

Conclusion

We have constructed infectious clones for SAV based on a subtype 3 genome. The clones may serve as a platform for further functional studies.  相似文献   

2.

Background

Chikungunya virus (CHIKV) and other alphaviruses are the etiologic agents of numerous diseases in both humans and animals. Despite this, the viral mediators of protective immunity against alphaviruses are poorly understood, highlighted by the lack of a licensed human vaccine for any member of this virus genus. The alphavirus E2, the receptor-binding envelope protein, is considered to be the predominant target of the protective host immune response. Although envelope protein domains have been studied for vaccine and neutralization in flaviviruses, their role in alphaviruses is less characterized. Here, we describe the role of the alphavirus E2 domains in neutralization and protection through the use of chimeric viruses.

Methodology/Principal Findings

Four chimeric viruses were constructed in which individual E2 domains of CHIKV were replaced with the corresponding domain from Semliki Forest virus (SFV) (ΔDomA/ΔDomB/ΔDomC/ ΔDomA+B). Vaccination studies in mice (both live and inactivated virus) revealed that domain B was the primary determinant of neutralization. Neutralization studies with CHIKV immune serum from humans were consistent with mouse studies, as ΔDomB was poorly neutralized.

Conclusions/Significance

Using chimeric viruses, it was determined that the alphavirus E2 domain B was the critical target of neutralizing antibodies in both mice and humans. Therefore, chimeric viruses may have more relevance for vaccine discovery than peptide-based approaches, which only detect linear epitopes. This study provides new insight into the role of alphavirus E2 domains on neutralization determinants and may be useful for the design of novel therapeutic technologies.  相似文献   

3.
Salmonid alphavirus (SAV) causes pancreas disease and sleeping disease in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) and confers a major burden to the aquaculture industry. A commercial inactivated whole virus vaccine propagated in a salmon cell line at low temperature provides effective protection against SAV infections. Alphaviruses (family Togaviridae) are generally transmitted between vertebrate hosts via blood-sucking arthropod vectors, typically mosquitoes. SAV is unique in this respect because it can be transmitted directly from fish to fish and has no known invertebrate vector. Here, we show for the first time that SAV is able to complete a full infectious cycle within arthropod cells derived from the Asian tiger mosquito Aedes albopictus. Progeny virus is produced in C6/36 and U4.4. cells in a temperature-dependent manner (at 15°C but not at 18°C), can be serially passaged and remains infectious to salmonid Chinook salmon embryo cells. This suggests that SAV is not a vertebrate-restricted alphavirus after all and may have the potential to replicate in invertebrates. The current study also shows the ability of SAV to be propagated in mosquito cells, thereby possibly providing an alternative SAV production system for vaccine applications.  相似文献   

4.
Alphavirus dogma has long dictated the production of a discrete set of structural proteins during infection of a cell: capsid, pE2, 6K, and E1. However, bioinformatic analyses of alphavirus genomes (A. E. Firth, B. Y. Chung, M. N. Fleeton, and J. F. Atkins, Virol. J. 5:108, 2008) suggested that a ribosomal frameshifting event occurs during translation of the alphavirus structural polyprotein. Specifically, a frameshift event is suggested to occur during translation of the 6K gene, yielding production of a novel protein, termed transframe (TF), comprised of a C-terminal extension of the 6K protein in the −1 open reading frame (ORF). Here, we validate the findings of Firth and colleagues with respect to the production of the TF protein and begin to characterize the function of TF. Using a mass spectrometry-based approach, we identified TF in purified preparations of both Sindbis and Chikungunya virus particles. We next constructed a panel of Sindbis virus mutants with mutations which alter the production, size, or sequence of TF. We demonstrate that TF is not absolutely required in culture, although disrupting TF production leads to a decrease in virus particle release in both mammalian and insect cells. In a mouse neuropathogenesis model, mortality was <15% in animals infected with the TF mutants, whereas mortality was 95% in animals infected with the wild-type virus. Using a variety of additional assays, we demonstrate that TF retains ion-channel activity analogous to that of 6K and that lack of production of TF does not affect genome replication, particle infectivity, or envelope protein transit to the cell surface. The TF protein therefore represents a previously uncharacterized factor important for alphavirus assembly.  相似文献   

5.
The E3L proteins encoded by vaccinia virus bind double-stranded RNA and mediate interferon resistance, promote virus growth, and impair virus-mediated apoptosis. Among the cellular proteins implicated as targets of E3L is the protein kinase regulated by RNA (PKR). To test in human cells the role of PKR in conferring the E3L mutant phenotype, HeLa cells stably deficient in PKR generated by an RNA interference-silencing strategy were compared to parental and control knockdown cells following infection with either an E3L deletion mutant (ΔE3L) or wild-type (WT) virus. The growth yields of WT virus were comparable in PKR-sufficient and -deficient cells. By contrast, the single-cycle yield of ΔE3L virus was increased by nearly 2 log10 in PKR-deficient cells over the impaired growth in PKR-sufficient cells. Furthermore, virus-induced apoptosis characteristic of the ΔE3L mutant in PKR-sufficient cells was effectively abolished in PKR-deficient HeLa cells. The viral protein synthesis pattern was altered in ΔE3L-infected PKR-sufficient cells, characterized by an inhibition of late viral protein expression, whereas in PKR-deficient cells, late protein accumulation was restored. Phosphorylation of both PKR and the α subunit of protein synthesis initiation factor 2 (eIF-2α) was elevated severalfold in ΔE3L-infected PKR-sufficient, but not PKR-deficient, cells. WT virus did not significantly increase PKR or eIF-2α phosphorylation in either PKR-sufficient or -deficient cells, both of which supported efficient WT viral protein production. Finally, apoptosis induced by infection of PKR-sufficient HeLa cells with ΔE3L virus was blocked by a caspase antagonist, but mutant virus growth was not rescued, suggesting that translation inhibition rather than apoptosis activation is a principal factor limiting virus growth.  相似文献   

6.
In Europe, 2 closely related alphaviruses (Togaviridae) are regarded as the causative agents of sleeping disease (SD) and salmon pancreas disease (SPD): SD virus (SDV) has been isolated from rainbow trout Oncorhynchus mykiss in France and the UK, while SPD virus (SPDV) has been isolated from salmon Salmo salar in Ireland and the UK. Farmed salmonids in western Norway also suffer from a disease called pancreas disease (PD), and this disease is also believed to be caused by an alphavirus. However, this virus has not yet been characterised at the molecular level. We have cultured a Norwegian salmonid alphavirus from moribund fishes diagnosed with cardiac myopathy syndrome (CMS) and fishes diagnosed with PD. The virus has also been found in salmon suffering from haemorrhagic smolt syndrome in the fresh water phase. The genomic organisation of the Norwegian salmonid alphavirus is identical to that in SPDV and SDV, and the nucleotide sequence similarity to the other 2 alphaviruses is 91.6 and 92.9%, respectively. Based on the pathological changes, host species and the nucleotide sequence, we suggest naming this virus Norwegian salmonid alphavirus (NSAV). Together with SPDV and SDV it constitutes a third subtype of salmonid alphavirus (SAV) species within the genus Alphavirus, family Togaviridae.  相似文献   

7.
Pancreas disease (PD) and sleeping disease (SD) are important viral scourges in aquaculture of Atlantic salmon and rainbow trout. The etiological agent of PD and SD is salmonid alphavirus (SAV), an unusual member of the Togaviridae (genus Alphavirus). SAV replicates at lower temperatures in fish. Outbreaks of SAV are associated with large economic losses of ~17 to 50 million $/year. Current control strategies rely on vaccination with inactivated virus formulations that are cumbersome to obtain and have intrinsic safety risks. In this research we were able to obtain non-infectious virus-like particles (VLPs) of SAV via expression of recombinant baculoviruses encoding SAV capsid protein and two major immunodominant viral glycoproteins, E1 and E2 in Spodoptera frugiperda Sf9 insect cells. However, this was only achieved when a temperature shift from 27°C to lower temperatures was applied. At 27°C, precursor E2 (PE2) was misfolded and not processed by host furin into mature E2. Hence, E2 was detected neither on the surface of infected cells nor as VLPs in the culture fluid. However, when temperatures during protein expression were lowered, PE2 was processed into mature E2 in a temperature-dependent manner and VLPs were abundantly produced. So, temperature shift-down during synthesis is a prerequisite for correct SAV glycoprotein processing and recombinant VLP production.  相似文献   

8.
Genes that inhibit apoptosis have been described for many DNA viruses. Herpesviruses often contain even more than one gene to control cell death. Apoptosis inhibition by viral genes is postulated to contribute to viral fitness, although a formal proof is pending. To address this question, we studied the mouse cytomegalovirus (MCMV) protein M36, which binds to caspase-8 and blocks death receptor-induced apoptosis. The growth of MCMV recombinants lacking M36 (ΔM36) was attenuated in vitro and in vivo. In vitro, caspase inhibition by zVAD-fmk blocked apoptosis in ΔM36-infected macrophages and rescued the growth of the mutant. In vivo, ΔM36 infection foci in liver tissue contained significantly more apoptotic hepatocytes and Kupffer cells than did revertant virus foci, and apoptosis occurred during the early phase of virus replication prior to virion assembly. To further delineate the mode of M36 function, we replaced the M36 gene with a dominant-negative FADD (FADDDN) in an MCMV recombinant. FADDDN was expressed in cells infected with the recombinant and blocked the death-receptor pathway, replacing the antiapoptotic function of M36. Most importantly, FADDDN rescued ΔM36 virus replication, both in vitro and in vivo. These findings have identified the biological role of M36 and define apoptosis inhibition as a key determinant of viral fitness.  相似文献   

9.
The block toward human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) can be relieved by Vpx (viral protein X), which degrades sterile alpha motif-hydroxylase domain 1 (SAMHD1) or by exogenously added deoxynucleosides (dNs), lending support to the hypothesis that SAMHD1 acts by limiting deoxynucleoside triphosphates (dNTPs). This notion has, however, been questioned. We show that while dNs and Vpx increase the infectivity of HIV-1, only the latter restores the infectivity of a simian immunodeficiency virus of macaques variant, SIVMACΔVpx virus. This distinct behavior seems to map to CA, suggesting that species-specific CA interactors modulate infection of DCs.  相似文献   

10.
11.
Sleeping disease (SD) is currently a matter of concern for salmonid fish farmers in most parts of the world. A viral etiology of SD has recently been suspected, since virus-like particles have been observed in infected rainbow trout cells. In salmonid-derived cell lines, the maximal rate of virus production was observed at 10 degrees C, while little virus was produced at 14 degrees C. Through biochemical, physicochemical, and morphological studies, SD virus (SDV) was shown to be an enveloped virus of roughly 60 nm in diameter. The genome consists of 12 kb of RNA, with the appearance of a 26S subgenomic RNA during the time course of SDV replication. The screening of a random-primed cDNA library constructed from the genomic RNA of semipurified virions facilitated the identification of a specific SDV cDNA clone having an open reading frame related to the alphavirus E2 glycoproteins. To extend the comparison between SDV structural proteins and the alphavirus protein counterparts, the nucleotide sequence of the total 4.1-kb subgenomic RNA has been determined. The 26S RNA encodes a 1,324-amino-acid polyprotein exhibiting typical alphavirus structural protein organization. SDV structural proteins showed several remarkable features compared to other alphaviruses: (i) unusually large individual proteins, (ii) very low homology (ranging from 30 to 34%) (iii) an unglycosylated E3 protein, and (iv) and E1 fusion domain sharing mutations implicated in the pH threshold. Although phylogenetically related to the Semliki Forest virus group of alphaviruses, SDV should be considered an atypical member, able to naturally replicate in lower vertebrates.  相似文献   

12.
The catalytic subunit of herpes simplex virus 1 DNA polymerase (HSV-1 Pol) has been extensively studied; however, its full complement of functional domains has yet to be characterized. A crystal structure has revealed a previously uncharacterized pre-NH2-terminal domain (residues 1 to 140) within HSV-1 Pol. Due to the conservation of the pre-NH2-terminal domain within the herpesvirus Pol family and its location in the crystal structure, we hypothesized that this domain provides an important function during viral replication in the infected cell distinct from 5′-3′ polymerase activity. We identified three pre-NH2-terminal Pol mutants that exhibited 5′-3′ polymerase activity indistinguishable from that of wild-type Pol in vitro: deletion mutants PolΔN43 and PolΔN52 that lack the extreme N-terminal 42 and 51 residues, respectively, and mutant PolA6, in which a conserved motif at residues 44 to 49 was replaced with alanines. We constructed the corresponding pol mutant viruses and found that the polΔN43 mutant displayed replication kinetics similar to those of wild-type virus, while polΔN52 and polA6 mutant virus infection resulted in an 8-fold defect in viral yield compared to that achieved with wild type and their respective rescued derivative viruses. Additionally, both polΔN52 and polA6 viruses exhibited defects in viral DNA synthesis that correlated with the observed reduction in viral yield. These results strongly indicate that the conserved motif within the pre-NH2-terminal domain is important for viral DNA synthesis and production of infectious virus and indicate a functional role for this domain.  相似文献   

13.
Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (HHV8) ORF50 encodes a transactivator, K-Rta, which functions as the switch from latent to lytic virus replication. K-bZIP interacts with K-Rta and can repress its transactivation activity for some viral promoters. Both K-Rta and K-bZIP are required for origin-dependent DNA replication. To determine the role of K-bZIP in the context of the viral genome, we generated a recombinant HHV8 bacterial artificial chromosome (BAC) with a deletion in the K-bZIP open reading frame. This BACmid, BAC36ΔK8, displayed an enhanced growth phenotype with respect to virus production and accumulation of virus-encoded mRNAs measured by real-time PCR when K-Rta was used to induce the virus lytic cycle. Conversely, induction of the virus lytic cycle using tetradecanoyl phorbol acetate/n-butyrate resulted in no virus production and an aberrant gene expression pattern from BAC36ΔK8-containing cells compared to wild-type (wt) BAC. This null virus phenotype was efficiently complemented by the expression of K-bZIP in trans, restoring virus production to wt BAC levels. Immunofluorescence staining revealed that subcellular localization of K-Rta was unchanged; however, a disruption of LANA subcellular localization was observed in cells harboring BAC36ΔK8, suggesting that K-bZIP influences LANA localization. Coimmunoprecipitation experiments confirmed that K-bZIP interacts with LANA in BCBL-1 cells and in cotransfection assays. Lastly, the chromatin immunoprecipitation assay revealed that, in an environment where K-Rta is overexpressed and in the absence of K-bZIP, K-Rta binds to CAAT enhancer binding protein α sites within oriLyt, suggesting that it is K-Rta that supplies an essential replication function and that K-bZIP may serve to augment or facilitate the interaction of K-Rta with oriLyt.  相似文献   

14.
While a large number of mosquito-transmitted alphaviruses are known to cause serious human diseases, there are no licensed vaccines that protect against alphavirus infections. The alphavirus chikungunya virus (CHIKV) has caused multiple recent outbreaks of chikungunya fever. This virus has the potential to cause a worldwide epidemic and has generated strong interest in development of a prophylactic CHIKV vaccine. We report here on the development of a potent experimental vaccine for CHIKV based on a chimeric vesicular stomatitis virus (VSV) expressing the entire CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G). These VSVΔG-CHIKV chimeras incorporated functional CHIKV glycoproteins into the viral envelope in place of VSV G. The chimeric viruses were attenuated for growth in tissue culture but could be propagated to high titers without VSV G complementation. They also generated robust neutralizing antibody and cellular immune responses to CHIKV in mice after a single dose and protected mice against CHIKV infection. VSVΔG-alphavirus chimeras could have general applicability as alphavirus vaccines.  相似文献   

15.
Poxvirus genomes consist of a linear duplex DNA that ends in short inverted and complementary hairpin structures. These elements also encode loops and mismatches that likely serve a role in genome packaging and perhaps replication. We constructed mutant vaccinia viruses (VACV) where the native hairpins were replaced by altered forms and tested effects on replication, assembly, and virulence. Our studies showed that structure, not sequence, likely determines function as one can replace an Orthopoxvirus (VACV) hairpin with one copied from a Leporipoxvirus with no effect on growth. Some loops can be deleted from VACV hairpins with little effect, but VACV bearing too few mismatches grew poorly and we couldn’t recover viruses lacking all mismatches. Further studies were conducted using a mutant bearing only one of six mismatches found in wild-type hairpins (SΔ1Δ3–6). This virus grew to ~20-fold lower titers, but neither DNA synthesis nor telomere resolution was affected. However, the mutant exhibited a particle-to-PFU ratio 10-20-fold higher than wild-type viruses and p4b/4b core protein processing was compromised, indicating an assembly defect. Electron microscopy showed that SΔ1Δ3–6 mutant development was blocked at the immature virus (IV) stage, which phenocopies known effects of I1L mutants. Competitive DNA binding assays showed that recombinant I1 protein had less affinity for the SΔ1Δ3–6 hairpin than the wild-type hairpin. The SΔ1Δ3–6 mutant was also attenuated when administered to SCID-NCR mice by tail scarification. Mice inoculated with viruses bearing wild-type hairpins exhibited a median survival of 30–37 days, while mice infected with SΔ1Δ3–6 virus survived >70 days. Persistent infections favor genetic reversion and genome sequencing detected one example where a small duplication near the hairpin tip likely created a new loop. These observations show that mismatches serve a critical role in genome packaging and provide new insights into how VACV “flip and flop” telomeres are arranged.  相似文献   

16.
The 80 trimeric, glycoprotein spikes that cover the surface of alphavirus particles are required for mediating viral entry into a host cell. Spike assembly is a regulated process that requires interactions between five structural proteins, E3, E2, 6K and its translational frameshift product TF, and E1. E3 is a small, ∼65-amino-acid glycoprotein that has two known functions: E3 serves as the signal sequence for translocation of the E3-E2-6K-E1 polyprotein into the endoplasmic reticulum (ER), and cleavage of E3 from E2 is essential for virus maturation. Nonetheless, when E3 is replaced with an ER signal sequence, spikes do not form and infectious particles are not assembled, suggesting an additional role(s) for E3 in the viral life cycle. To further investigate the role of E3 in spike assembly, we made chimeric viruses in which E3 from one alphavirus species is replaced with E3 from another species. Our results demonstrate that when E3 is interchanged between alphavirus species that belong to the same virus clade, viral titers and particle morphologies and compositions are similar to what are observed for the parental virus. In contrast, for chimeras in which E3 is derived from a different clade than the parental virus, we observed reduced titers and the formation of particles with atypical morphologies and protein compositions. We further characterized the E3 chimeras using a combination of structure-function and revertant analyses. This work revealed two specific interactions between E3 and its cognate E2 glycoprotein that are important for regulating spike assembly.  相似文献   

17.
The herpes simplex virus 1 (HSV-1) glycoprotein K (gK)/UL20 protein complex is incorporated into virion envelopes and cellular membranes and functions during virus entry and cell-to-cell spread. To investigate the role of gK/UL20 in the context of a highly neurovirulent virus strain, the HSV-1(McKrae) genome was cloned into a bacterial artificial chromosome plasmid (McKbac) and utilized to construct the mutant virus McK(gKΔ31-68), carrying a 37-amino-acid deletion within the gK amino terminus. The McKbac virus entered efficiently into Chinese hamster ovary (CHO) cells constitutively expressing HSV-1 human receptors, nectin-1, herpesvirus entry mediator (HVEM), or paired immunoglobulin-like type-2 receptor alpha (PILRα). In contrast, the McK(gKΔ31-68) virus failed to enter into CHO-PILRα cells, while it entered CHO cells expressing HVEM and nectin-1 more efficiently than the McKbac virus. Both McKbac and McK(gKΔ31-68) viruses entered all CHO cells expressing HSV-1 receptors via a pH-independent pathway. The HSV-1(F) gBΔ28syn mutant virus, encoding a carboxyl-terminal truncated gB, causes extensive cell fusion. Previously, we showed that the gKΔ31-68 amino acid deletion abrogated gBΔ28syn virus-induced cell fusion, indicating that the amino terminus of gK is required for gB-mediated virus-induced cell fusion (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. J. Kousoulas, Virology 83:12301–12313, 2009). Surprisingly, the gKΔ31-68/gBΔ28syn virus caused extensive fusion of CHO-nectin-1 cells but limited cell fusion of CHO-PILRα cells. Coimmunoprecipitation experiments revealed that both gK and PILRα bound gB in infected cells. Collectively, these results indicate that the amino terminus of gK is functionally and physically associated with the gB-PILRα protein complex and regulates membrane fusion of the viral envelope with cellular membranes during virus entry as well as virus-induced cell-to-cell fusion.  相似文献   

18.
Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all isolates (GBV- A and GBV- C). Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals, causing economically important diseases like classical swine fever (CSF) and bovine viral diarrhea (BVD). Recent findings describe the ability of NS3 of classical swine fever virus (CSFV) to compensate for disabling size increase of core protein (Riedel et al., 2010). NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et al., 2008; Ma et al., 2008). These findings raise questions about the necessity and function of core protein and the role of NS3 in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS) within NS3 helicase subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447Δc), virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior in cell culture did not reveal major differences between wildtype (Vp447) and Vp447Δc. Upon infection of the natural host, Vp447Δc was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the role of NS3 in particle assembly and the function of core protein in general.  相似文献   

19.
Mycoreovirus 1 (MyRV1) has 11 double-stranded RNA genome segments (S1 to S11) and confers hypovirulence to the chestnut blight fungus, Cryphonectria parasitica. MyRV1 genome rearrangements are frequently generated by a multifunctional protein, p29, encoded by a positive-strand RNA virus, Cryphonectria hypovirus 1. One of its functional roles is RNA silencing suppression. Here, we explored a possible link between MyRV1 genome rearrangements and the host RNA silencing pathway using wild-type (WT) and mutant strains of both MyRV1 and the host fungus. Host strains included deletion mutants of RNA silencing components such as dicer-like (dcl) and argonaute-like (agl) genes, while virus strains included an S4 internal deletion mutant MyRV1/S4ss. Consequently, intragenic rearrangements with nearly complete duplication of the three largest segments, i.e. S1, S2 and S3, were observed even more frequently in the RNA silencing-deficient strains Δdcl2 and Δagl2 infected with MyRV1/S4ss, but not with any other viral/host strain combinations. An interesting difference was noted between genome rearrangement events in the two host strains, i.e. generation of the rearrangement required prolonged culture for Δagl2 in comparison with Δdcl2. These results suggest a role for RNA silencing that suppresses genome rearrangements of a dsRNA virus.  相似文献   

20.
Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号