首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hamster V79 cells were repeatedly exposed to a low dose of hydrogen peroxide (H2O2) over several weeks and then exposed to H2O2, cisplatin or ultraviolet (UV) light. Cell killing was examined by colony formation, following these treatments. It was seen that cells conditioned by multiple low doses of H2O2 showed resistance to killing in case of H2O2 and cisplatin but the sensitivity to UV light was same as the control cells. Apoptosis was also determined in these cells after the same treatments. UV light failed to induce apoptosis in both conditioned and in control cells, but in case of cells treated with H2O2 and with cisplatin, there was less apoptosis in the conditioned cells compared to the control cells. From our observation we can say that the enhanced survival of cells after treatment with H2O2 or cisplatin could be due to inhibition of apoptosis.  相似文献   

2.
ABT-737 is a BH3 mimetic small molecule inhibitor that can effectively inhibit the activity of antiapoptotic Bcl-2 family proteins including Bcl2, Bcl-xL and Bcl-w, and further enhances the effect of apoptosis by activating the proapoptotic proteins (t-Bid, Bad, Bim). In this study, we demonstrate that ABT-737 improved the radiation sensitivity of cervical cancer HeLa cells and thereby provoked cell apoptosis. Our results show that ABT-737 inhibited HeLa cell proliferation and activated JNK and its downstream target c-Jun, which caused the up-regulation of Bim expression. Blockade of JNK/c-Jun signaling pathway resulted in significant down-regulation of ABT-737-induced Bim mRNA and protein expression level. Also, ABT-737 could evoke the Bim promoter activity, and enhance the radiation sensitivity of HeLa cells via JNK/c-Jun and Bim signaling pathway. Our data imply that combination of ABT-737 and conventional radiation therapy might represent a highly effective therapeutic approach for future treatment of cervical cancer.  相似文献   

3.
Considering that chemotherapy resistance is vital to the progression of cervical carcinoma, emerging researchers are focused on developing anti-tumor drugs to assist the treatment efficiency of chemotherapy. Melatonin has anti-tumor activity via several mechanisms including its anti-proliferative and pro-apoptotic effects as well as its potent pro-oxidant action in tumor cells. Therefore, melatonin may be useful for the treatment of tumors in association with chemotherapy drugs. Here, we studied the effect and mechanism of melatonin on HeLa cells apoptosis under cisplatin (CIS) treatment, particularly focusing on the caspase-9-related apoptosis pathway and mitophagy-mediated anti-apoptotic mechanism. The result indicated that co-stimulation of HeLa cells with CIS in the presence of melatonin further increased cellular apoptosis. Furthermore, concomitant treatments with melatonin and CIS significantly enhanced the mitochondrial structure and function damage, substantially augmented the caspase-9-dependent mitochondrial apoptosis with evidenced by lower mitochondria membrane potential, higher mitochondria ROS, and more pro-apoptotic proteins compared to the treatment with CIS alone. Mechanistically, melatonin inactivated mitophagy via blockade of JNK/Parkin, leading to the inhibition of anti-apoptotic mitophagy. The mitophagy had the ability to clear and remove damaged mitochondria, impairing CIS-mediated mitochondrial apoptosis. Activation of JNK/Parkin could alleviate the lethal effect of melatonin on HeLa cells. In summary, this study confirmed that melatonin sensitizes human cervical cancer HeLa cells to CIS-induced apoptosis through inhibition of JNK/Parkin/mitophagy pathways.  相似文献   

4.
High incidence of lymph node spread and distant metastasis make poor prognosis in human nasopharyngeal carcinoma (NPC). Therefore, better treatments for NPC are needed. This study investigated the anticancer activity of 6-O-angeloylenolin, a plant-derived sesquiterpene lactone, on human nasopharyngeal cancer (CNE) cells. 6-O-Angeloylenolin was found to significantly inhibit the proliferation of CNE cells. The rate of inhibition was comparable to that of cisplatin, a well known chemotherapeutic agent used to treat NPC. Further mechanistic studies revealed that 6-O-angeloylenolin caused cell-cycle arrest in the S and G2/M phases and, subsequently, the induction of apoptosis. Rapid repressions of cyclin D1, cyclin D3, p27, cdc25c and p-cdc25c (Ser216) were observed after 1-h treatment, followed by decreases in the expression of CDK4, cdc2 and p-cdc2 (Tyr15) after 12 h. Down-regulations of p-Rb (Ser780), p21Waf1/Cip1, cyclin A, and cyclin E were also detected as later events. Two early events that marked the occurrence of apoptosis were phosphatidylserine exposure and mitochondria membrane potential depletion, which occurred after 12 h of treatment, while a sub-G1 peak was also detected after 36-h treatment. Apoptosis induction was further confirmed by other apoptotic features, including nuclear fragmentation, and PARP cleavage. Moreover, 6-O-angeloylenolin caused the release of cytochrome c and AIF to the cytosol by regulating the expression of the Bcl-2 family proteins. However, pretreatment of the general caspase inhibitor failed to attenuate the apoptosis induction effect, suggesting that apoptosis induction of 6-O-angeloylenolin was independent of caspase activation. While 6-O-angeloylenolin also triggered the activation of Akt, ERK and JNK, only the JNK inhibitor significantly decreased the extent of cell death and apoptosis in CNE cells. Taken together, these results suggest the potential applicability of 6-O-angeloylenolin as a candidate for NPC treatment.  相似文献   

5.
Radiation resistance and recurrent have become the major factors resulting in poor prognosis in the clinical treatment of patients with nasopharyngeal carcinoma (NPC). New strategies to enhance the efficacy of radiotherapy have been focused on the development of radiosensitizers and searching for directly targets that modulated tumor radiosensitivity. A novel potential radiosensitizer 1,8-Dihydroxy −3-(2′-(4″-methylpiperazin-1″-yl) ethyl-9,10-anthraquinone −3-carboxylate (RP-4) was designed and synthesized based on molecular docking technology, which was expected to regulate the radiosensitivity of tumor cells through targeting Rac1. In order to assess the radiosensitization activity of RP-4 on NPC cells, the highly differentiated CNE1 and poorly differentiated CNE2 cells NPC lines were employed. According to the results, RP-4 showed higher binding affinity toward the interaction with Rac1 than lead compounds. We found that RP-4 could inhibit cell viability and proliferation in CNE1 and CNE2 cells and significantly induced apoptosis after non-toxic concentration of RP-4 combined with 2Gy irradiation. RP-4 could effectively modulated the radiosensitivity both CNE1 cells and CNE2 cells through activating Rac1/NADPH signaling pathway and its downstream JNK/AP-1 pathway. What's more, Rac1/NADPH signaling pathway were significantly activated in Rac1-overexpressed CNE1 and CNE2 cells after treated with RP-4. Taken together, Rac1 and its downstream pathway may probably be the direct targets of RP-4 in regulating radiosensitivity of NPC cells, our finding provided a novel strategy for the development of therapeutic agents in response to tumorous radiation resistance.  相似文献   

6.
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.  相似文献   

7.
Members of the Ras-association domain family (RASSF) of proteins influence apoptosis and cell cycling but little is known about the mechanisms. Here, we show that RASSF7 interacts with N-Ras and mitogen-activated protein kinase kinase 7 (MKK7) to negatively regulate c-Jun N-terminal kinase (JNK) signaling. Stress-induced JNK activation and apoptosis were markedly enhanced in cells depleted of RASSF7 or N-Ras by RNAi knockdown. An interaction with RASSF7 promoted the phosphorylated state of MKK7 but inhibited this kinase's ability to activate JNK. RASSF7 required its RA domain for both interaction with GTP-bound N-Ras and the anti-apoptotic response to stress stimuli. Following prolonged stress, however, RASSF7's anti-apoptotic effect was eliminated because of degradation of RASSF7 protein via the ubiquitin-proteasome pathway. Our results indicate that RASSF7 acts in concert with N-Ras to constitute a stress-sensitive temporary mechanism of apoptotic regulation. With initial stress, RASSF7/N-Ras promotes cell survival by inhibiting the MKK7/JNK pathway. However, with prolonged stress, RASSF7 protein undergoes degradation that allows cell death signaling to proceed. Our findings may account for the association of elevated RASSF7 with tumorigenesis.  相似文献   

8.
Monocytic cells survive HIV replication and consequent cytopathic effects because of their decreased sensitivity to HIV-induced apoptosis. However, the mechanism underlying this resistance to apoptosis remains poorly understood. Lymphocytic cells are exposed to microbial products because of their translocation from the gut in persons with chronic HIV infections or following coinfections. We hypothesized that activation of monocytic cells by such microbial products through interaction with corresponding TLRs may confer antiapoptotic signals. Using HIV-viral protein R (Vpr)(52-96) peptide as a model apoptosis-inducing agent, we demonstrated that unlike monocyte-derived macrophages, undifferentiated primary human monocytes and promonocytic THP-1 cells are highly susceptible to Vpr(52-96)-induced apoptosis. Interestingly, monocytes and THP-1 cells stimulated with TLR9 agonist CpG induced almost complete resistance to Vpr(52-96)-induced apoptosis, albeit through a TLR9-independent signaling pathway. Moreover, CpG selectively induced the antiapoptotic cellular inhibitor of apoptosis (c-IAP)-2 protein and inhibition of the c-IAP-2 gene by either specific small interfering RNA or synthetic second mitochondrial activator of caspases mimetic reversed CpG-induced resistance against Vpr(52-96)-mediated apoptosis. We demonstrated that c-IAP-2 is regulated by the JNK and calcium signaling pathway, in particular calmodulin-dependent protein kinase-II. Furthermore, inhibition of JNK and the calcium signaling including the calmodulin-dependent protein kinase-II by either pharmacological inhibitors or their specific small interfering RNAs reversed CpG-induced protection against Vpr(52-96)-mediated apoptosis. We also show that CpG induced JNK phosphorylation through activation of the calcium signaling pathway. Taken together, our results suggest that CpG-induced protection may be mediated by c-IAP-2 through the calcium-activated JNK pathway via what appeared to be TLR9-independent signaling pathways.  相似文献   

9.

Nasopharyngeal carcinoma (NPC) is one of the rare cancers in western countries but predominant in Southeast Asian countries including Thailand. One major cause for failure of NPC chemotherapeutic treatments is reportedly correlated with the elevation of cancer stem cell (CSC) fractions. Thus, this present study aims to investigate the effect of cisplatin (CDDP) treatment on the enrichment of cancer stem-like cells (CSCs) and its associated signaling pathway in EBV-negative NPC cells. Cisplatin-pretreated 5-8F NPC cells (5-8F CDDP) were first generated by treating the cells with 0.5 μM cisplatin for 48 h. After the instant treatment, 5-8F CDDP showed increased IC50 values, demonstrating a decrease in CDDP sensitization. Besides, the proportion of NPC cells with cancer stem-like phenotypes comprising side population (SP), key stemness-related gene expressions including SOX2, ALDH1, CD24 was significantly enhanced. Additionally, 5-8F CDDP displayed the upregulation of β-catenin gene, suggesting its association with the CSC-initiating mechanism. Furthermore, a tankyrase inhibitor for Wnt/β-catenin pathway, XAV939, substantially reduced CSCs and retrieved the cisplatin sensitivity in 5-8F CDDP. This confirms that the Wnt/β-catenin signaling is accountable for rising of the CSC population in EBV-negative NPC. Finally, the combined treatment of CDDP and XAV939 exhibited lower 5-8F CDDP cell viability compared to the treatment of CDDP alone, suggesting the reversal of cisplatin sensitization. In conclusion, the enhancement of CSCs in 5-8F NPC cells caused by the instant cisplatin treatment is initially mediated through the upregulation of β-catenin and activation of Wnt/β-catenin signaling pathway. As a result, a primary chemotherapeutic treatment with closely monitoring the targeted Wnt/β-catenin signaling pathway could potentially prevent the development of CSCs and improve the treatment efficiency in NPC.

  相似文献   

10.
Zeng  Quan  Wang  Zhihai  Liu  Chuan  Gong  Zhitao  Yang  Li  Jiang  Liang  Ma  Zuxia  Qian  Yi  Yang  Yucheng  Kang  Houyong  Hong  Suling  Bu  Youquan  Hu  Guohua 《Molecular and cellular biochemistry》2016,413(1-2):137-143

Nasopharyngeal carcinoma (NPC) is a rare but highly invasive cancer that is prevalent among people of southern Chinese ancestry in southern China and Southeast Asia. Radiotherapy and cisplatin (CDDP)-based chemotherapy are the main treatment options. Unfortunately, disease response to concurrent chemoradiotherapy varies among patients with NPC, and many cases are resistant to CDDP and radiotherapy. NFBD1 functions in cell cycle checkpoint activation and DNA repair following DNA damage. In this study, we identified the NFBD1 as a tractable molecular target to chemosensitize NPC cells. NFBD1 expression in NPC CNE1 cell lines was depleted using lentivirus-mediated short hairpin RNA, and the elevated sensitivity of these NFBD1-inhibited NPC cells to therapeutic reagent CDDP and 5-fluorouracil (5-FU) was evaluated using MTS assays. Flow cytometry analysis also showed that NFBD1 knockdown led to an obvious induction of apoptosis in CDDP- or 5-FU-treated CNE1 cells. Furthermore, we implicated the involvement of NFBD1 in Rad51 and DNA-PKcs foci formation following CDDP or 5-FU chemotherapy. In conclusion, NFBD1 knockdown improves the chemosensitivity of NPC cells by inhibiting cell growth and promoting apoptosis through the impairment of DNA damage repair, suggesting NFBD1 as a novel therapeutic target for NPC.

  相似文献   

11.
The study of the ability of chemotherapeutic agents and/or ionizing radiation (IR) to induce cell death in tumor cells is essential for setting up new and more efficient therapies against human cancer. Since drug and ionizing radiation resistance is an impediment to successful chemotherapy against cancer, we wanted to check if etoposide/ionizing radiation combined treatment could have a synergic effect to improve cell death in K562, a well-known human erythroleukemia ionizing radiation resistant cell line. In this study, we examined the role played by JNK/SAPK, p53, and mitochondrial pathways in cell death response of K562 cells to etoposide and IR treatment. Our results let us suppose that the induction of cell death, already evident in 15 Gy exposed cells, mainly in 15 Gy plus etoposide, may be mediated by JNK/SAPK pathway. Moreover, p53 is a potential substrate for JNK and may act as a JNK target for etoposide and ionizing radiation. Thus further investigation on these and other molecular mechanisms underlying the cell death response following etoposide and ionizing radiation exposure could be useful to overcome resistance mechanisms in tumor cells.  相似文献   

12.
We have here examined ionizing radiation (IR)-induced apoptotic signaling in one IR-sensitive small cell lung carcinoma (SCLC) and one resistant non-small cell lung carcinoma (NSCLC) cell line, both harboring mutant p53. In the sensitive SCLC cell line, IR induced conformational modulation of Bak and Bax, mitochondrial depolarization, and nuclear fragmentation. These events were not observed in the IR-resistant NSCLC cell line. However, in the same cells, cisplatin, a DNA-damaging drug, induced Bak and Bax modulation, mitochondrial depolarization, and nuclear fragmentation. Pre-mitochondrial signaling events were examined in order to further characterize the differing IR response. In the SCLC cell line, IR-induced apoptotic signaling was found to involve a MEKK1-related pathway and activation of the stress-activated kinases JNK and p38. In comparison, the NSCLC cell line had higher basal levels of activity of JNK and p38, and IR treatment did not further activate these kinases. However, NSCLC cells were sensitive to Bak modulation and apoptosis induced by a kinase-active mutant of MEKK1. Together, the results delineate a mechanism of IR resistance in NSCLC cells and indicate that IR and cisplatin induce Bak modulation and apoptosis via different pathways.  相似文献   

13.
We aimed to investigate the effects of Krüppel‐like factor 5 (KLF5) on cell biological function and chemotherapy sensitivity of anaplastic thyroid carcinoma (ATC) and explore the underlying mechanism. In this study, we found that KLF5 was expressed higher in ATC cells than that in normal thyroid cells. Knockdown of KLF5 inhibited proliferation, induced apoptosis and restrained invasion and migration abilities of ATC cells. KLF5 overexpression promoted proliferation and inhibited apoptosis of ATC cells in response to doxorubicin (Dox), whereas KLF5 knockdown increased the sensitivity of ATC cells to Dox. Multidrug resistance gene 1/permeability glycoprotein and ATP‐binding cassette superfamily G member 2 were heightened in ATC cells with KLF5 overexpression, but the opposite results were found in sh‐KLF5‐treated cells. Phosphorylation (p)‐c‐Jun N‐terminal kinase (JNK) was upregulated in KLF5 overexpression cells, whereas it was downregulated in the KLF5 knockdown treatment group. Furthermore, KLF5 knockdown inhibited ATC growth and enhanced the Dox sensitivity of ATC by inactivating the JNK signaling pathway. Taken together, our findings concluded that KLF5 knockdown can remarkably inhibit the proliferation, invasion, and migration and induce apoptosis of ATC cells, and increase the chemotherapy sensitivity of ATC, all of which probably through inhibiting the JNK signaling pathway.  相似文献   

14.
Nasopharyngeal carcinoma (NPC) is a highly invasive head-neck cancer derived from the nasopharyngeal epithelium, mainly prevalent in southern China and Southeast Asia. Radiotherapy and adjuvant cisplatin (DDP) chemotherapy are standard administrations applied in the treatment of NPC. However, resistance to chemotherapeutic drugs has recently become more common, resulting in worse treatment outcome for NPC therapy. To elucidate the underlying molecular basis of drug resistance to DDP in NPC cells, we examined the morphocytology, cell motility and molecular changes in DDP-resistant NPC cells with respect to epithelial-mesenchymal transition (EMT) features. We found that EMT is closely associated with DDP-induced drug resistance in NPC cells, as DDP-resistant cells displayed morphological and molecular markers changes consistent with EMT. Wound healing and Transwell Boyden chamber assays revealed an enhanced migration and invasion potential in DDP-resistant NPC cells. Mechanistically, upregulation of NEDD4 was observed to relate to EMT in DDP-resistant cells. More importantly, depletion of NEDD4 in resistant cells led to a partial reversion of EMT phenotypes to MET characteristics. These data suggest that NEDD4 is largely involved in EMT features and chemoresistance of NPC cancer cells. NEDD4 could be a novel therapeutic target to overcome drug resistance in successful administrations of NPC.  相似文献   

15.
Caspases and c-Jun N-terminal kinase (JNK) are activated in tumor cells during induction of apoptosis. We investigated the signaling cascade and function of these enzymes in cisplatin-induced apoptosis. Treatment of Jurkat T-cells with cisplatin induced cell death with DNA fragmentation and activation of caspase and JNK. Bcl-2 overexpression suppressed activation of both enzymes, whereas p35 and CrmA inhibited only the DEVDase (caspase-3-like) activity, indicating that the activation of these enzymes may be differentially regulated. Cisplatin induced apoptosis with the cytochrome c release and caspase-3 activation in both wild-type and caspase-8-deficient JB-6 cells, while the Fas antibody induced these apoptotic events only in wild-type cells. This indicates that caspase-8 activation is required for Fas-mediated apoptosis, but not cisplatin-induced cell death. On the other hand, cisplatin induced the JNK activation in both the wild-type and JB-6 cells, and the caspase-3 inhibitor Z-DEVD-fmk did not inhibit this activation. The JNK overexpression resulted in a higher JNK activity, AP-1 DNA binding activity, and metallothionein expression than the empty vector-transfected cells following cisplatin treatment. It also partially protected the cells from cisplatin-induced apoptosis by decreasing DEVDase activity. These data suggest that the cisplatin-induced apoptotic signal is initiated by the caspase-8-independent cytochrome c release, and the JNK activation protects cells from cisplatin-induced apoptosis via the metallothionein expression.  相似文献   

16.
17.
Cancer stem cells (CSCs) exhibit specific characteristics including decontrolled self-renewal, tumor-initiating, promoting, and metastatic potential, abnormal stemness signaling, and chemotherapy resistance. Thus, targeting CSC is becoming an emerging cancer treatment. α-Mangostin has been shown to have potent and multiple anticancer activities. Accordingly, we hypothesized that α-mangostin may diminish the stemness and proliferation of CSC-like cervical cancer cells. In our results, comparing to the parent cells, CSC-like SiHa and HeLa cells highly expressed CSC marker Sox2, Oct4, Nanog, CK-17, and CD49f. α-Mangostin significantly reduced the cell viability, sphere-forming ability, and expression of the CSC stemness makers of CSC-like cervical cancer cells. Further investigation showed that α-mangostin induced mitochondrial depolarization and mitochondrial apoptosis signaling, including upregulation of Bax, downregulation of Mcl-1 and Bcl-2, and activation of caspase-9/3. Moreover, α-mangostin synergically enhanced the cytotoxicity of cisplatin on CSC-like SiHa cells by promoting mitochondrial apoptosis and inhibiting the expression of CSC markers. Consistent with in vitro findings, in vivo tumor growth assay revealed that α-mangostin administration significantly inhibited the growth of inoculated CSC-like SiHa cells and synergically enhanced the antitumor effect of cisplatin. Our findings indicate that α-mangostin can reduce the stemness and proliferation of CSC-like SiHa and HeLa cells and promote the cytotoxicity of cisplatin, which may attribute to the mitochondrial apoptosis activation. Thus, it suggests that α-mangostin may have clinical potential to improve chemotherapy for cervical cancer by targeting cervical CSC.  相似文献   

18.
19.
Clear cell renal cell carcinoma (ccRCC) is a highly aggressive and common pathological subtype of renal cancer. This cancer is characterized by biallelic inactivation of the von Hippel–Lindau (VHL) tumor suppressor gene, which leads to the accumulation of hypoxia-inducible factors (HIFs). Although therapies targeted at HIFs can significantly improve survival, nearly all patients with advanced ccRCC eventually succumb to the disease. Thus, additional oncogenic events are thought to be involved in the development of ccRCC tumors. In this study, we investigated the role of RASSF6 in ccRCC. Downregulation of RASSF6 was commonly observed in primary tumors relative to matched adjacent normal tissues. Moreover, functional studies established that ectopic re-expression of RASSF6 in ccRCC cells inhibited cell proliferation, clonogenicity, and tumor growth in mice, whereas silencing of RASSF6 dramatically enhanced cell proliferation in vitro and in vivo. Mechanistic investigation suggested that RASSF6 triggers p21Cip1/Waf1 accumulation to induce G1 cell cycle arrest and promote apoptosis upon exposure to pro-apoptotic agents, and both of these mechanisms appear to be mediated by activated JNK signaling. Together, these findings suggest that RASSF6 may play a tumor suppressor role in the progression of ccRCC.  相似文献   

20.
Nasopharyngeal carcinoma (NPC) is a common malignant tumor in southern China and Southeast Asia, but the molecular mechanism of its pathogenesis is poorly understood. Our previous work demonstrated that NEK2 is overexpressed in multiple cancers. However, how NEK2 involves in NPC development remains to be elucidated. In this study, we firstly identified NEK2, located at +1q32-q33, a late event in NPC pathogenesis, overexpressed in the stage III-IV and paired sequential recurrent patients with NPC by immunohistochemistry. Furthermore, Kaplan-Meier analysis indicated high NEK2 conferred an inferior overall survival in NPC. In addition, cisplatin experiments with cell counting kit-8, colony formation, and a xenograft mice model of NPC demonstrated that NEK2 contributed to proliferation and cisplatin resistance in vitro and in vivo. On the contrary, downregulation of NEK2 by short hairpin RNA inhibited NPC cell growth and increased the sensitivity of cisplatin treatment in vitro. Thus, increased expression of NEK2 protein could not be predicted for poor survival but used as a novel biomarker for recurrence of NPC. Targeting NEK2 has the potential to eradicate the cisplatin-based chemotherapy resistant NPC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号