首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of cells with hyaluronan (HA) rich extracellular matrix involves the membrane receptor CD44. HA-CD44 interactions are particularly important in the development of glioma pathogenesis for its implication in tumor cells spreading. Highly motile states rely on the spaciotemporal regulation of HA-CD44 interactions occurring in specific cytoskeletal-supported membrane organization such as microvilli or the leading edge observed in migrating cell. We used AFM-based force measurement to probe the HA-CD44 interaction at localized regions at the surface of living glioma cells expressing high level of the CD44 standard isoform. We show that unstimulated cells interact with HA over their entire surfaces and are highly deformable when force is exerted on individual HA molecules bound to membrane CD44 receptors. Conversely, in PKC-activated cells the probed interactions are concentrated at the leading edge of the cells with reduced membrane deformability. Taken together, our results show that PKC-enhanced motility in glioma cells is associated with a redistribution of CD44 receptors at the leading edges concomitant with a stiffer anchoring of CD44 to the cell surface involving the actin cytoskeleton.  相似文献   

2.
Cell migration occurs as a highly-regulated cycle of cell polarization, membrane extension at the leading edge, adhesion, contraction of the cell body, and release from the extracellular matrix at the trailing edge. In this study, we investigated the involvement of SNARE-mediated membrane trafficking in cell migration. Using a dominant-negative form of the enzyme N-ethylmaleimide-sensitive factor as a general inhibitor of SNARE-mediated membrane traffic and tetanus toxin as a specific inhibitor of VAMP3/cellubrevin, we conducted transwell migration assays and determined that serum-induced migration of CHO-K1 cells is dependant upon SNARE function. Both VAMP3-mediated and VAMP3-independent traffic were involved in regulating this cell migration. Inhibition of SNARE-mediated membrane traffic led to a decrease in the protrusion of lamellipodia at the leading edge of migrating cells. Additionally, the reduction in cell migration resulting from the inhibition of SNARE function was accompanied by perturbation of a Rab11-containing alpha(5)beta(1) integrin compartment and a decrease in cell surface alpha(5)beta(1) without alteration to total cellular integrin levels. Together, these observations suggest that inhibition of SNARE-mediated traffic interferes with the intracellular distribution of integrins and with the membrane remodeling that contributes to lamellipodial extension during cell migration.  相似文献   

3.
We used micropipettes to aspirate leading and trailing edges of wild-type and mutant cells of Dictyostelium discoideum. Mutants were lacking either myosin II or talin, or both proteins simultaneously. Talin is a plasma membrane-associated protein important for the coupling between membrane and actin cortex, whereas myosin II is a cytoplasmic motor protein essential for the locomotion of Dictyostelium cells. Aspiration into the pipette occurred above a threshold pressure only. For all cells containing talin this threshold was significantly lower at the leading edge of an advancing cell as compared to its rear end, whereas we found no such difference in cells lacking talin. Wild-type and talin-deficient cells were able to retract from the pipette against an applied suction pressure. In these cells, retraction was preceded by an accumulation of myosin II in the tip of the aspirated cell lobe. Mutants lacking myosin II could not retract, even if the suction pressures were removed after aspiration. We interpreted the initial instability and the subsequent plastic deformation of the cell surface during aspiration in terms of a fracture between the cell plasma membrane and the cell body, which may involve destruction of part of the cortex. Models are presented that characterize the coupling strength between membrane and cell body by a surface energy sigma. We find sigma approximately 0.6(1.6) mJ/m(2) at the leading (trailing) edge of wild-type cells.  相似文献   

4.
Previous studies have demonstrated a role for calpains in cell migration through their capacity to regulate focal adhesion dynamics and rear retraction. In this study, we provide evidence that calpains also modulate membrane protrusion activity in fibroblasts. We find that an immortalized Capn4(-/-) fibroblast line displays an altered morphology, characterized by numerous thin membrane projections and increased transient membrane activity. Furthermore, we show that protrusion kinetics of lamellipodia at the leading edge are improperly regulated in Capn4(-/-) cells, leading to impaired net forward lamellipodial extension. To address the isoform specific functions of calpain 1 and calpain 2 during cell protrusion, we stably introduced small interfering RNAs (siRNAs) targeting each isoform into a fibroblast cell line. Despite a loss in calpain 1 activity, calpain 1 knockdown cells show normal morphology and membrane protrusion dynamics. However, cells in which calpain 2 is knocked down are characterized by a protrusive morphology, increased transient membrane activity and altered protrusion kinetics, similar to the Capn4(-/-) fibroblasts. Additionally, we find that calpain 2, but not calpain 1, is required for proteolysis of the cytoskeletal and focal adhesion proteins FAK, paxillin, spectrin, and talin. Together, our findings support a novel role for calpain 2 in limiting membrane protrusions and in regulating lamellipodial dynamics at the leading edge of migrating cells.  相似文献   

5.
Lanteri ML  Lamattina L  Laxalt AM 《Planta》2011,234(4):845-855
The second messenger nitric oxide (NO), phosphatidic acid (PA) and reactive oxygen species (ROS) are involved in the plant defense response during plant–pathogen interactions. NO has been shown to participate in PA production in response to the pathogen-associated molecular pattern xylanase in tomato cell suspensions. Defense responses downstream of PA include ROS production. The goal of this work was to study the signaling mechanisms involved in PA production during the defense responses triggered by xylanase and mediated by NO in the suspension-cultured tomato cells. We analyzed the participation of protein kinases, guanylate cyclase and the NO-mediated posttranslational modification S-nitrosylation, by means of pharmacology and biochemistry. We showed that NO, PA and ROS levels are significantly diminished by treatment with the general protein kinase inhibitor staurosporine. This indicates that xylanase-induced protein phosphorylation events might be the important components leading to NO formation, and hence for the downstream regulation of PA and ROS levels. When assayed, a guanylate cyclase inhibitor or a cGMP analog did not alter the PA accumulation. These results suggest that a cGMP-mediated pathway is not involved in xylanase-induced PA formation. Finally, the inhibition of protein S-nitrosylation did not affect NO formation but compromised PA and ROS production. Data collectively indicate that upon xylanase perception, cells activate a protein kinase pathway required for NO formation and that, S-nitrosylation-dependent mechanisms are involved in downstream signaling leading to PA and ROS.  相似文献   

6.
The integrin-dependent migration of myeloid cells requires tight coordination between actin-based cell membrane protrusion and integrin-mediated adhesion to form a stable leading edge. Under this mode of migration, polarised myeloid cells including dendritic cells, macrophages and osteoclasts develop podosomes that sustain the extending leading edge. Podosome integrity and dynamics vary in response to changes in the physical and biochemical properties of the cell environment. In the current article we discuss the role of various factors in initiation and stability of podosomes and the roles of the Wiskott Aldrich Syndrome Protein (WASP) in this process. We discuss recent data indicating that in a cellular context WASP is crucial not only for localised actin polymerisation at the leading edge and in podosome cores but also for coordination of integrin clustering and activation during podosome formation and disassembly.  相似文献   

7.
We examined the spatio-temporal activity of RhoA in migrating cells and growth factor-stimulated cells by using probes based on the principle of fluorescence resonance energy transfer. In HeLa cells migrating at a low cell density, RhoA was activated both at the contractile tail and at the leading edge. However, RhoA was activated only at the leading edge in MDCK cells migrating as a monolayer sheet. In growth factor-stimulated Cos1 and NIH3T3 cells, the activity of RhoA was greatly decreased at the plasma membrane, but remained high at the membrane ruffles in nascent lamellipodia. These observations are in agreement with the proposed role played by RhoA in stress fiber formation, but they also implicated RhoA in the regulation of membrane ruffling, the induction of which is a typical phenotype of activated Rac. In agreement with this view, dominant negative RhoA was found to inhibit membrane ruffling induced by active Rac. Furthermore, we found that Cdc42 activity was also required for high RhoA activity in membrane ruffles. Finally, we found that mDia1, but not ROCK, was stably associated with membrane ruffles. In conclusion, these results suggested that RhoA cooperates with Rac1 and Cdc42 to induce membrane ruffles via the recruitment of mDia.  相似文献   

8.
In comparison to our knowledge of the recycling of adhesion receptors and actin assembly, exactly how the cell controls its surface membrane to form a lamellipodium during migration is poorly understood. Here, we show the recycling endosome membrane is incorporated into the leading edge of a migrating cell to expand lamellipodia membrane. We have identified the SNARE complex that is necessary for fusion of the recycling endosome with the cell surface, as consisting of the R‐SNARE VAMP3 on the recycling endosome partnering with the surface Q‐SNARE Stx4/SNAP23, which was found to translocate and accumulate on the leading edge of migrating cells. Increasing VAMP3‐mediated fusion of the recycling endosome with the surface increased membrane ruffling, while inhibition of VAMP3‐mediated fusion showed that incorporation of the recycling endosome is necessary for efficient lamellipodia formation. At the same time, insertion of this recycling endosome membrane also delivers its cargo integrin α5β1 to the cell surface. The loss of this extra membrane for lamellipodia expansion and delivery of cargo in cells resulted in macrophages with a diminished capacity to effectively migrate. Thus, the recycling endosome membrane is incorporated into the leading edge and this aids expansion of the lamellipodia and simultaneously delivers integrins necessary for efficient cell migration.  相似文献   

9.
A critical role for the polarization of membrane recycling in cell motility   总被引:4,自引:0,他引:4  
This paper is concerned with the proposition that the insertion of membrane mass into the leading edge of a motile cell plays a critical role in directed cell migration. We show by immunofluorescence, with cells transfected with a cloned cDNA encoding the G-protein of a temperature-sensitive mutant of vesicular stomatitis virus, that the first cell surface appearance of the G-protein is indeed at the leading edge of the motile cell. Two drugs capable of inhibiting directed cell migration, cytochalasin D and monensin, appear to function independently, the former by affecting the actin cytoskeleton without affecting the polarized insertion of membrane mass into the cell surface and the latter by abrogating membrane mass insertion without affecting the actin cytoskeleton.  相似文献   

10.
Cell migration is a highly controlled essential cellular process, often dysregulated in tumour cells, dynamically controlled by the architecture of the cell. Studies involving cellular fractionation and microarray profiling have previously identified functionally distinct mRNA populations specific to cellular organelles and architectural compartments. However, the interaction between the translational machinery itself and cellular structures is relatively unexplored. To help understand the role for the compartmentalization and localized protein synthesis in cell migration, we have used scanning confocal microscopy, immunofluorescence and a novel ribopuromycylation method to visualize translating ribosomes. In the present study we show that eIFs (eukaryotic initiation factors) localize to the leading edge of migrating MRC5 fibroblasts in a process dependent on TGN (trans-Golgi network) to plasma membrane vesicle transport. We show that eIF4E and eIF4GI are associated with the Golgi apparatus and membrane microdomains, and that a proportion of these proteins co-localize to sites of active translation at the leading edge of migrating cells.  相似文献   

11.
BACKGROUND: Locomoting cells exhibit a constant retrograde flow of plasma membrane (PM) proteins from the leading edge lamellipodium backward, which when coupled to substrate adhesion, may drive forward cell movement. However, the intracellular source of these PM components and whether their continuous retrograde flow is required for cell motility is unknown.RESULTS: To test the hypothesis that the anterograde secretion pathway supplies PM components for retrograde flow that are required for lamellipodial activity and cell motility, we specifically inhibited transport of cargo from the trans-Golgi network (TGN) to the PM in Swiss 3T3 fibroblasts and monitored cell motility using time-lapse microscopy. TGN-to-PM trafficking was inhibited with a dominant-negative, kinase-dead (kd) mutant of protein kinase D1 (PKD) that specifically blocks budding of secretory vesicles from the TGN and does not affect other transport pathways. Inhibition of PKD on the TGN inhibited directed cell motility and retrograde flow of surface markers and filamentous actin, while inhibition of PKD elsewhere in the cell neither blocked anterograde membrane transport nor cell motile functions. Exogenous activation of Rac1 in PKD-kd-expressing cells restored lamellipodial dynamics independent of membrane traffic. However, lamellipodial activity was delocalized from a single leading edge, and directed cell motility was not fully recovered.CONCLUSIONS: These results indicate that PKD-mediated anterograde membrane traffic from the TGN to the PM is required for fibroblast locomotion and localized Rac1-dependent leading edge activity. We suggest that polarized secretion transmits cargo that directs localized signaling for persistent leading edge activity necessary for directional migration.  相似文献   

12.
Angiogenesis requires concomitant remodeling of cell junctions and migration, as exemplified by recent observations of extensive endothelial cell movement along growing blood vessels. We report that a protein complex that regulates cell junctions is required for VEGF-driven directional migration and for angiogenesis in vivo. The complex consists of RhoA and Syx, a RhoA guanine exchange factor cross-linked by the Crumbs polarity protein Mupp1 to angiomotin, a phosphatidylinositol-binding protein. The Syx-associated complex translocates to the leading edge of migrating cells by membrane trafficking that requires the tight junction recycling GTPase Rab13. In turn, Rab13 associates with Grb2, targeting Syx and RhoA to Tyr(1175)-phosphorylated VEGFR2 at the leading edge. Rab13 knockdown in zebrafish impeded sprouting of intersegmental vessels and diminished the directionality of their tip cells. These results indicate that endothelial cell mobility in sprouting vessels is facilitated by shuttling the same protein complex from disassembling junctions to the leading edges of cells.  相似文献   

13.
Actin filament dynamics at the cell membrane are important for cell-matrix and cell-cell adhesions and the protrusion of the leading edge. Since actin filaments must be connected to the cell membrane to exert forces but must also detach from the membrane to allow it to move and evolve, the balance between actin filament tethering and detachment at adhesion sites and the leading edge is key for cell shape changes and motility. How this fine tuning is performed in cells remains an open question, but possible candidates are the Drosophila enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins, which localize to dynamic actin structures in the cell. Here we study VASP-mediated actin-related proteins 2/3 (Arp2/3) complex-dependent actin dynamics using a substrate that mimics the fluid properties of the cell membrane: an oil-water interface. We show evidence that polymerization activators undergo diffusion and convection on the fluid surface, due to continual attachment and detachment to the actin network. These dynamics are enhanced in the presence of VASP, and we observe cycles of catastrophic detachment of the actin network from the surface, resulting in stop-and-go motion. These results point to a role for VASP in the modulation of filament anchoring, with implications for actin dynamics at cell adhesions and at the leading edge of the cell.  相似文献   

14.
Membrane tension is becoming recognized as an important mechanical regulator of motile cell behavior. Although membrane-tension measurements have been performed in various cell types, the tension distribution along the plasma membrane of motile cells has been largely unexplored. Here, we present an experimental study of the distribution of tension in the plasma membrane of rapidly moving fish epithelial keratocytes. We find that during steady movement the apparent membrane tension is ∼30% higher at the leading edge than at the trailing edge. Similar tension differences between the front and the rear of the cell are found in keratocyte fragments that lack a cell body. This front-to-rear tension variation likely reflects a tension gradient developed in the plasma membrane along the direction of movement due to viscous friction between the membrane and the cytoskeleton-attached protein anchors embedded in the membrane matrix. Theoretical modeling allows us to estimate the area density of these membrane anchors. Overall, our results indicate that even though membrane tension equilibrates rapidly and mechanically couples local boundary dynamics over cellular scales, steady-state variations in tension can exist in the plasma membranes of moving cells.  相似文献   

15.
Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival.  相似文献   

16.
Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.  相似文献   

17.
To investigate the mechanisms by which adhesions form and disperse in migrating cells, we expressed alpha 5 integrin, alpha-actinin, and paxillin as green fluorescent protein (GFP) fusions. All localized with their endogenous counterparts and did not perturb migration when expressed at moderate levels. alpha 5-GFP also rescued the adhesive defects in CHO B2 cells, which are alpha 5 integrin deficient. In ruffling cells, alpha 5-GFP and alpha-actinin--GFP localized prominently at the leading edge in membrane protrusions. Of the three GFP fusion proteins that we examined, paxillin was the first component to appear visibly organized in protrusive regions of the cell. When a new protrusion formed, the paxillin appeared to remodel from older to newer adhesions at the leading edge. alpha-Actinin subsequently entered adhesions, which translocated toward the cell center, and inhibited paxillin turnover. The new adhesions formed from small foci of alpha-actinin--GFP and paxillin-GFP, which grew in size. Subsequently, alpha 5 integrin entered the adhesions to form visible complexes, which served to stabilize the adhesions. alpha 5-GFP also resided in endocytic vesicles that emanated from the leading edge of protrusions. Integrin vesicles at the cell rear moved toward the cell body. As cells migrated, alpha 5 vesicles also moved from a perinuclear region to the base of the lamellipodium. The alpha 5 vesicles colocalized with transferrin receptor and FM 4-64 dye. After adhesions broke down in the rear, alpha 5-GFP was found in fibrous structures behind the cell, whereas alpha-actinin--GFP and paxillin-GFP moved up the lateral edge of retracting cells as organized structures and then dissipated.  相似文献   

18.
Funamoto S  Meili R  Lee S  Parry L  Firtel RA 《Cell》2002,109(5):611-623
We have investigated the mechanisms of leading edge formation in chemotaxing Dictyostelium cells. We demonstrate that while phosphatidylinositol 3-kinase (PI3K) transiently translocates to the plasma membrane in response to chemoattractant stimulation and to the leading edge in chemotaxing cells, PTEN, a negative regulator of PI3K pathways, exhibits a reciprocal pattern of localization. By uniformly localizing PI3K along the plasma membrane, we show that chemotaxis pathways are activated along the lateral sides of cells and PI3K can initiate pseudopod formation, providing evidence for a direct instructional role of PI3K in leading edge formation. These findings provide evidence that differential subcellular localization and activation of PI3K and PTEN is required for proper chemotaxis.  相似文献   

19.
Cell movement is characterized by anterior-posterior polarization of multiple cell structures. We show here that the plasma membrane is polarized in moving endothelial cells (EC); in particular, plasma membrane microviscosity (PMM) is increased at the cell leading edge. Our studies indicate that cholesterol has an important role in generation of this microviscosity gradient. In vitro studies using synthetic lipid vesicles show that membrane microviscosity has a substantial and biphasic influence on actin dynamics; a small amount of cholesterol increases actin-mediated vesicle deformation, whereas a large amount completely inhibits deformation. Experiments in migrating ECs confirm the important role of PMM on actin dynamics. Angiogenic growth factor-stimulated cells exhibit substantially increased membrane microviscosity at the cell front but, unexpectedly, show decreased rates of actin polymerization. Our results suggest that increased PMM in lamellipodia may permit more productive actin filament and meshwork formation, resulting in enhanced rates of cell movement.  相似文献   

20.
Mononuclear phagocytes regulate the generation of plasmin by secreting urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-2 (PAI-2). We investigated the production of plasminogen activator (PA) and PA inhibitor by the human monocytic leukemia cell line, THP-1. Similar to U937 monoblast-like cells and peripheral blood monocytes (PBM), THP-1 cells produce a PA that is specifically neutralized by anti-uPA antibody and comigrates with human high molecular mass uPA (54 kDa) on casein-plasminogen zymogaphy. PA activity could be dissociated from intact THP-1 cells by brief treatment with a weak acid-glycine buffer, indicating that the uPA is secreted and bound to receptors on the plasma membrane. Regulation of uPA proceeds normally in THP-1 cells, with cell-associated PA activity increasing from 77 +/- 20 to 163 +/- 26 and 325 +/- 30 mPU/10(6) cells in response to PMA and LPS, respectively; parallel increases in steady state levels of uPA mRNA were observed. In contrast to normal expression of uPA activity, functional PAI-2 could not be demonstrated in either the conditioned media or cell lysates of THP-1 under basal or stimulated conditions. Both U937 and PBM secrete low levels of PA inhibitor activity that increase substantially in response to stimulation with PMA and LPS. Immunoreactive PAI-2, measured by ELISA, was undetectable in THP-1 lysates or conditioned medium, but was consistently present in U937 and PBM, paralleling the presence of PA inhibitor activity. THP-1 cells express low levels of an abnormally sized mRNA for PAI-2 and demonstrate a regulatory defect whereby steady state levels of PAI-2 mRNA are markedly reduced upon stimulation with PMA or LPS. By contrast, U937 and PBM respond to identical stimulation with increases in PAI-2 mRNA. We conclude that THP-1 cells express a structurally abnormal species of PAI-2 mRNA, with complete loss of inhibitory activity as well as altered function of PMA- and LPS-responsive regulatory elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号