首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

2.

Background

Leptospira-induced macrophage death has been confirmed to play a crucial role in pathogenesis of leptospirosis, a worldwide zoonotic infectious disease. Intracellular free Ca2+ concentration ([Ca2+]i) elevation induced by infection can cause cell death, but [Ca2+]i changes and high [Ca2+]i-induced death of macrophages due to infection of Leptospira have not been previously reported.

Methodology/Principal Findings

We first used a Ca2+-specific fluorescence probe to confirm that the infection of L. interrogans strain Lai triggered a significant increase of [Ca2+]i in mouse J774A.1 or human THP-1 macrophages. Laser confocal microscopic examination showed that the [Ca2+]i elevation was caused by both extracellular Ca2+ influx through the purinergic receptor, P2X7, and Ca2+ release from the endoplasmic reticulum, as seen by suppression of [Ca2+]i elevation when receptor-gated calcium channels were blocked or P2X7 was depleted. The LB361 gene product of the spirochete exhibited phosphatidylinositol phospholipase C (L-PI-PLC) activity to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol-1,4,5-trisphosphate (IP3), which in turn induces intracellular Ca2+ release from endoplasmic reticulum, with the Km of 199 µM and Kcat of 8.566E-5 S-1. Secretion of L-PI-PLC from the spirochete into supernatants of leptospire-macrophage co-cultures and cytosol of infected macrophages was also observed by Western Blot assay. Lower [Ca2+]i elevation was induced by infection with a LB361-deficient leptospiral mutant, whereas transfection of the LB361 gene caused a mild increase in [Ca2+]i. Moreover, PI-PLCs (PI-PLC-β3 and PI-PLC-γ1) of the two macrophages were activated by phosphorylation during infection. Flow cytometric detection demonstrated that high [Ca2+]i increases induced apoptosis and necrosis of macrophages, while mild [Ca2+]i elevation only caused apoptosis.

Conclusions/Significance

This study demonstrated that L. interrogans infection induced [Ca2+]i elevation through extracellular Ca2+ influx and intracellular Ca2+ release cause macrophage apoptosis and necrosis, and the LB361 gene product was shown to be a novel PI-PLC of L. interrogans responsible for the [Ca2+]i elevation.  相似文献   

3.

Background

Hypoxia causes remodeling and contractile responses in both pulmonary artery (PA) and pulmonary vein (PV). Here we explore the effect of hypoxia on PV and pulmonary venous smooth muscle cells (PVSMCs).

Methods

Chronic hypoxic pulmonary hypertension (CHPH) model was established by exposing rats to 10% O2 for 21 days. Rat distal PVSMCs were isolated and cultured for in vitro experiments. The fura-2 based fluorescence calcium imaging was used to measure the basal intracellular Ca2+ concentration ([Ca2+]i) and store-operated Ca2+ entry (SOCE). Quantitative RT-PCR and western blotting were performed to measure the expression of mRNA and levels of canonical transient receptor potential (TRPC) protein respectively.

Results

Hypoxia increased the basal [Ca2+]i and SOCE in both freshly dissociated and serum cultured distal PVSMCs. Moreover, hypoxia increased TRPC6 expression at mRNA and protein levels in both cultured PVSMCs exposed to prolonged hypoxia (4% O2, 60 h) and distal PV isolated from CHPH rats. Hypoxia also enhanced proliferation and migration of rat distal PVSMCs.

Conclusions

Hypoxia induces elevation of SOCE in distal PVSMCs, leading to enhancement of basal [Ca2+]i in PVSMCs. This enhancement is potentially correlated with the increased expression of TRPC6. Hypoxia triggered intracellular calcium contributes to promoted proliferation and migration of PVSMCs.  相似文献   

4.
2-Aminoethoxydiphenyl borate (2-APB) is used as a pharmacological tool because it antagonizes inositol 1,4,5-trisphosphate receptors and store-operated Ca2+ (SOC) channels, and activates some TRP channels. Recently, we reported that 2-APB enhanced the increase in cytotoxic [Ca2+]i, resulting in cell death under external acidic conditions in rat pheochromocytoma cell line PC12. However, the molecular mechanism and functional role of the 2-APB-induced Ca2+ influx in PC12 have not been clarified. In this study, to identify the possible target for the action of 2-APB we examined the pharmacological and molecular properties of [Ca2+]i and secretory responses to 2-APB under extracellular low pH conditions. 2-APB dose-dependently induced a [Ca2+]i increase and dopamine release, which were greatly enhanced by the external acidification (pH 6.5). [Ca2+]i and secretory responses to 2-APB at pH 6.5 were inhibited by the removal of extracellular Ca2+ and SOC channel blockers such as SK&F96365, La3+ and Gd3+. PC12 expressed all SOC channel molecules, Orai 1, Orai 2 and Orai 3. When we used an siRNA system, downregulation of Orai 3, but not Orai 1 and Orai 2, attenuated both [Ca2+]i and secretory responses to 2-APB. These results suggest that 2-APB evokes external acid-dependent increases of [Ca2+]i and dopamine release in PC12 through the activation of Orai 3. The present results indicate that 2-APB may be a useful pharmacological tool for Orai channel-related signaling.  相似文献   

5.
Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.  相似文献   

6.

Background  

Although various endothelium-dependent relaxing factors (endothelial autacoids) are released upon the elevation of endothelial cytosolic free Ca2+ concentration (EC [Ca2+]i), the quantitative relationship between EC [Ca2+]i and vascular tone remains to be established. Moreover, whether the basal release of endothelial autacoids is modulated by basal EC [Ca2+]i is still unclear. We assessed these issues by using a novel method that allows simultaneous recording of EC [Ca2+]i and vascular displacement in dissected rat aortic segments.  相似文献   

7.

Background  

Stimulation of Dictyostelium discoideum with cAMP evokes an elevation of the cytosolic free Ca2+ concentration ([Ca2+]i). The [Ca2+]i-change is composed of liberation of stored Ca2+ and extracellular Ca2+-entry. The significance of the [Ca2+]i-transient for chemotaxis is under debate. Abolition of chemotactic orientation and migration by Ca2+-buffers in the cytosol indicates that a [Ca2+]i-increase is required for chemotaxis. Yet, the iplA - mutant disrupted in a gene bearing similarity to IP3-receptors of higher eukaryotes aggregates despite the absence of a cAMP-induced [Ca2+]i-transient which favours the view that [Ca2+]i-changes are insignificant for chemotaxis.  相似文献   

8.

Background

Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). These ganglion cell photoreceptors send axons to several central targets involved in a variety of functions. Within the retina ipRGCs provide excitatory drive to dopaminergic amacrine cells via glutamatergic signals and ipRGCs are coupled to wide-field GABAergic amacrine cells via gap junctions. However, the extent to which ipRGCs are coupled to other retinal neurons in the ganglion cell layer via gap junctions is unclear. Carbenoxolone, a widely employed gap junction inhibitor, greatly reduces the number of retinal neurons exhibiting non-rod, non-cone mediated light-evoked Ca2+ signals suggesting extensive intercellular coupling between ipRGCs and non-ipRGCs in the ganglion cell layer. However, carbenoxolone may directly inhibit light-evoked Ca2+ signals in ipRGCs independent of gap junction blockade.

Methodology/Principal Findings

To test the possibility that carbenoxolone directly inhibits light-evoked Ca2+ responses in ipRGCs, the light-evoked rise in intracellular Ca2+ ([Ca2+]i) was examined using fura-2 imaging in isolated rat ipRGCs maintained in short-term culture in the absence and presence of carbenoxolone. Carbenoxolone at 50 and 100 µM concentrations completely abolished the light-evoked rise in [Ca2+]i in isolated ipRGCs. Recovery from carbenoxolone inhibition was variable.

Conclusions/Significance

We demonstrate that the light-evoked rise in [Ca2+]i in isolated mammalian ganglion cell photoreceptors is inhibited by carbenoxolone. Since the light-evoked increase in [Ca2+]i in isolated ipRGCs is almost entirely due to Ca2+ entry via L-type voltage-gated calcium channels and carbenoxolone does not inhibit light-evoked action potential firing in ipRGCs in situ, carbenoxolone may block the light-evoked increase in [Ca2+]i in ipRGCs by blocking L-type voltage-gated Ca2+ channels. The ability of carbenoxolone to block evoked Ca2+ responses must be taken into account when interpreting the effects of this pharmacological agent on retinal or other neuronal circuits, particularly if a change in [Ca2+]i is the output being measured.  相似文献   

9.
Alcohol is a potent neuroteratogen that can trigger neuronal death in the developing brain. However, the mechanism underlying this alcohol‐induced neuronal death is not fully understood. Utilizing primary cultures of cerebellar granule neurons (CGN), we tested the hypothesis that the alcohol‐induced increase in intracellular calcium [Ca2+]i causes the death of CGN. Alcohol induced a dose‐dependent (200–800 mg/dL) neuronal death within 24 h. Ratiometric Ca2+ imaging with Fura‐2 revealed that alcohol causes a rapid (1–2 min), dose‐dependent increase in [Ca2+]i, which persisted for the duration of the experiment (5 or 7 min). The alcohol‐induced increase in [Ca2+]i was observed in Ca2+‐free media, suggesting intracellular Ca2+ release. Pre‐treatment of CGN cultures with an inhibitor (2‐APB) of the inositol‐triphosphate receptor (IP3R), which regulates Ca2+ release from the endoplasmic reticulum (ER), blocked both the alcohol‐induced rise in [Ca2+]i and the neuronal death caused by alcohol. Similarly, pre‐treatment with BAPTA/AM, a Ca2+‐chelator, also inhibited the alcohol‐induced surge in [Ca2+]i and prevented neuronal death. In conclusion, alcohol disrupts [Ca2+]i homeostasis in CGN by releasing Ca2+ from intracellular stores, resulting in a sustained increase in [Ca2+]i. This sustained increase in [Ca2+]i may be a key determinant in the mechanism underlying alcohol‐induced neuronal death.  相似文献   

10.

Background

Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC) is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation and PAH. Increase in cytosolic free [Ca2+] ([Ca2+]i) is a prerequisite for NFAT nuclear translocation. Elevated [Ca2+]i in PASMC of PAH patients has been demonstrated through up-regulation of store-operated Ca2+ channels (SOC) which is encoded by the transient receptor potential (TRP) channel protein. Thus we investigated if: 1) up-regulation of TRPC1 channel expression which induces enhancement of SOC-mediated Ca2+ influx and increase in [Ca2+]i is involved in hypoxia-induced PASMC proliferation; 2) hypoxia-induced promotion of [Ca2+]i leads to nuclear translocation of NFAT and regulates PASMC proliferation and TRPC1 expression; 3) the anti-proliferative effect of sildenafil is mediated by inhibition of this SOC/Ca2+/NFAT pathway.

Methods

Human PASMC were cultured under hypoxia (3% O2) with or without sildenafil treatment for 72 h. Cell number and cell viability were determined with a hemocytometer and MTT assay respectively. [Ca2+]i was measured with a dynamic digital Ca2+ imaging system by loading PASMC with fura 2-AM. TRPC1 mRNA and protein level were detected by RT-PCR and Western blotting respectively. Nuclear translocation of NFAT was determined by immunofluoresence microscopy.

Results

Hypoxia induced PASMC proliferation with increases in basal [Ca2+]i and Ca2+ entry via SOC (SOCE). These were accompanied by up-regulation of TRPC1 gene and protein expression in PASMC. NFAT nuclear translocation was significantly enhanced by hypoxia, which was dependent on SOCE and sensitive to SOC inhibitor SKF96365 (SKF), as well as cGMP analogue, 8-brom-cGMP. Hypoxia-induced PASMC proliferation and TRPC1 up-regulation were inhibited by SKF and NFAT blocker (VIVIT and Cyclosporin A). Sildenafil treatment ameliorated hypoxia-induced PASMC proliferation and attenuated hypoxia-induced enhancement of basal [Ca2+]i, SOCE, up-regulation of TRPC1 expression, and NFAT nuclear translocation.

Conclusion

The SOC/Ca2+/NFAT pathway is, at least in part, a downstream mediator for the anti-proliferative effect of sildenafil, and may have therapeutic potential for PAH treatment.  相似文献   

11.
12.

Objective

Adenylyl cyclases (ACs) play important role in regulating pancreatic beta cell growth, survival and secretion through the synthesis of cyclic AMP (cAMP). MDL-12,330A and SQ 22536 are two AC inhibitors used widely to establish the role of ACs. The goal of this study was to examine the effects of MDL-12,330A and SQ 22536 on insulin secretion and underlying mechanisms.

Methods

Patch-clamp recording, Ca2+ fluorescence imaging and radioimmunoassay were used to measure outward K+ currents, action potentials (APs), intracellular Ca2+ ([Ca2+]i) and insulin secretion from rat pancreatic beta cells.

Results

MDL-12,330A (10 µmol/l) potentiated insulin secretion to 1.7 times of control in the presence of 8.3 mmol/l glucose, while SQ 22536 did not show significant effect on insulin secretion. MDL-12,330A prolonged AP durations (APDs) by inhibiting voltage-dependent K+ (KV) channels, leading to an increase in [Ca2+]i levels. It appeared that these effects induced by MDL-12,330A did not result from AC inhibition, since SQ 22536 did not show such effects. Furthermore, inhibition of the downstream effectors of AC/cAMP signaling by PKA inhibitor H89 and Epac inhibitor ESI-09, did not affect KV channels and insulin secretion.

Conclusion

The putative AC inhibitor MDL-12,330A enhances [Ca2+]i and insulin secretion via inhibition of KV channels rather than AC antagonism in beta cells, suggesting that the non-specific effects is needed to be considered for the right interpretation of the experimental results using this agent in the analyses of the role of AC in cell function.  相似文献   

13.

Background

Lyme disease is a common vector-borne disease caused by the spirochete Borrelia burgdorferi (Bb), which manifests as systemic and targeted tissue inflammation. Both in vitro and in vivo studies have shown that Bb-induced inflammation is primarily host-mediated, via cytokine or chemokine production that promotes leukocyte adhesion/migration. Whether Bb produces mediators that can directly alter the vascular permeability in vivo has not been investigated. The objective of the present study was to investigate if Bb produces a mediator(s) that can directly activate endothelial cells resulting in increases in permeability in intact microvessels in the absence of blood cells.

Methodology/Principal Findings

The effects of cell-free, spent culture medium from virulent (B31-A3) and avirulent (B31-A) B. burgdorferi on microvessel permeability and endothelial calcium concentration, [Ca2+]i, were examined in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). Endothelial [Ca2+]i, a necessary signal initiating hyperpermeability, was measured in Fura-2 loaded microvessels. B31-A3 spent medium caused a rapid and transient increase in Lp and endothelial [Ca2+]i. Within 2–5 min, the mean peak Lp increased to 5.6±0.9 times the control, and endothelial [Ca2+]i increased from 113±11 nM to a mean peak value of 324±35 nM. In contrast, neither endothelial [Ca2+]i nor Lp was altered by B31-A spent medium.

Conclusions/Significance

A mediator(s) produced by virulent Bb under culture conditions directly activates endothelial cells, resulting in increases in microvessel permeability. Most importantly, the production of this mediator is associated with Bb virulence and is likely produced by one or more of the 8 plasmid(s) missing from strain B31-A.  相似文献   

14.
Severe acidosis caused death of cultured cerebellar granule neurons (CGNs). Acidosis was accompanied by a progressive increase of the intracellular zinc ions ([Zn2+]i) and decrease of [Ca2+]i. Zn2+ chelator, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), prevented the increase of [Zn2+]i and acidosis-induced neuronal death. However, neuronal death was insensitive to blockade of ASIC1 channels with amiloride, as CGNs display considerably lower expression of ASIC1a than other neurons. The antioxidant trolox and menadione significantly protected neurons from acidotic death. Earlier, we demonstrated that menadione rescues neurons from the deleterious effect of inhibition of mitochondrial complex I (Isaev et al. Neuroreport 15:2227–2231, 2004). We speculate that excessive Zn2+-dependent production of reactive oxygen species by mitochondrial complex I may be a general motive for the induction of cell death in CGNs under acidotic conditions.  相似文献   

15.

Background

The extracellular calcium-sensing receptor (CaSR) belongs to family C of the G protein coupled receptors. Whether the CaSR is expressed in the pulmonary artery (PA) is unknown.

Methods

The expression and distribution of CaSR were detected by RT-PCR, Western blotting and immunofluorescence. PA tension was detected by the pulmonary arterial ring technique, and the intracellular calcium concentration ([Ca2+]i) was detected by a laser-scanning confocal microscope.

Results

The expressions of CaSR mRNA and protein were found in both rat pulmonary artery smooth muscle cells (PASMCs) and PAs. Increased levels of [Ca2+]o (extracellular calcium concentration) or Gd3+ (an agonist of CaSR) induced an increase of [Ca2+]i and PAs constriction in a concentration-dependent manner. In addition, the above-mentioned effects of Ca2+ and Gd3+ were inhibited by U73122 (specific inhibitor of PLC), 2-APB (specific antagonist of IP3 receptor), and thapsigargin (blocker of sarcoplasmic reticulum calcium ATPase).

Conclusions

CaSR is expressed in rat PASMCs, and is involved in regulation of PA tension by increasing [Ca2+]i through G-PLC-IP3 pathway.  相似文献   

16.
Xiong W  Liu T  Wang Y  Chen X  Sun L  Guo N  Zheng H  Zheng L  Ruat M  Han W  Zhang CX  Zhou Z 《PloS one》2011,6(10):e24573

Aim

Neurotransmitter release is elicited by an elevation of intracellular Ca2+ concentration ([Ca2+]i). The action potential triggers Ca2+ influx through Ca2+ channels which causes local changes of [Ca2+]i for vesicle release. However, any direct role of extracellular Ca2+ (besides Ca2+ influx) on Ca2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG) neurons and chromaffin cells, widely used models for studying vesicle exocytosis.

Results

Using photolysis of caged Ca2+ and caffeine-induced release of stored Ca2+, we found that extracellular Ca2+ inhibited exocytosis following moderate [Ca2+]i rises (2–3 µM). The IC50 for extracellular Ca2+ inhibition of exocytosis (ECIE) was 1.38 mM and a physiological reduction (∼30%) of extracellular Ca2+ concentration ([Ca2+]o) significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca2+]o. The calcimimetics Mg2+, Cd2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca2+-sensing receptor (CaSR) was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE.

Conclusion/Significance

As an extension of the classic Ca2+ hypothesis of synaptic release, physiological levels of extracellular Ca2+ play dual roles in evoked exocytosis by providing a source of Ca2+ influx, and by directly regulating quantal size and release probability in neuronal cells.  相似文献   

17.
Pancreatic cancer is an aggressive cancer with poor prognosis and limited treatment options. Cancer cells rapidly proliferate and are resistant to cell death due, in part, to a shift from mitochondrial metabolism to glycolysis. We hypothesized that this shift is important in regulating cytosolic Ca2+ ([Ca2+]i), as the ATP-dependent plasma membrane Ca2+ ATPase (PMCA) is critical for maintaining low [Ca2+]i and thus cell survival. The present study aimed to determine the relative contribution of mitochondrial versus glycolytic ATP in fuelling the PMCA in human pancreatic cancer cells. We report that glycolytic inhibition induced profound ATP depletion, PMCA inhibition, [Ca2+]i overload, and cell death in PANC1 and MIA PaCa-2 cells. Conversely, inhibition of mitochondrial metabolism had no effect, suggesting that glycolytic ATP is critical for [Ca2+]i homeostasis and thus survival. Targeting the glycolytic regulation of the PMCA may, therefore, be an effective strategy for selectively killing pancreatic cancer while sparing healthy cells.  相似文献   

18.
19.
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.  相似文献   

20.

Background

At fertilisation, mammalian oocytes are activated by oscillations of intracellular Ca2+ ([Ca2+]i). Phospholipase Cζ, which is introduced by fertilising spermatozoon, triggers [Ca2+]i oscillations through the generation of inositol 1,4,5-triphosphate (IP3), which causes Ca2+ release by binding to IP3 receptors located on the endoplasmic reticulum (ER) of the oocyte. Ability to respond to this activating stimulus develops during meiotic maturation of the oocyte. Here we examine how the development of this ability is perturbed when a single spermatozoon is introduced into the oocyte prematurely, i.e. during oocyte maturation.

Results

Mouse oocytes during maturation in vitro were fertilised by ICSI (intracytoplasmic sperm injection) 1 – 4 h after germinal vesicle break-down (GVBD) and were subsequently cultured until they reached metaphase II (MII) stage. At MII stage they were fertilised in vitro for the second time (refertilisation). We observed that refertilised oocytes underwent activation with similar frequency as control oocytes, which also went through maturation in vitro, but were fertilised only once at MII stage (87% and 93%, respectively). Refertilised MII oocytes were able to develop [Ca2+]i oscillations in response to penetration by spermatozoa. We found however, that they generated a lower number of transients than control oocytes. We also showed that the oocytes, which were fertilised during maturation had a similar level of MPF activity as control oocytes, which were not subjected to ICSI during maturation, but had reduced level of IP3 receptors.

Conclusion

Mouse oocytes, which were experimentally fertilised during maturation retain the ability to generate repetitive [Ca2+]i transients, and to be activated after completion of maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号