首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson’s disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.  相似文献   

2.
3.
Sleep deprivation (SD) adversely affects brain function and is accompanied by frequency dependent changes in EEG. Recent studies have suggested that BOLD fluctuations pertain to a spatiotemporal organization with different frequencies. The present study aimed to investigate the frequency-dependent SD-related brain oscillatory activity by using the amplitude of low-frequency fluctuation (ALFF) analysis. The ALFF changes were measured across different frequencies (Slow-4: 0.027–0.073 Hz; Slow-5: 0.01–0.027 Hz; and Typical band: 0.01–0.08 Hz) in 24 h SD as compared to rested wakeful during resting-state fMRI. Sixteen volunteers underwent two fMRI sessions, once during rested wakefulness and once after 24 h of SD. SD showed prominently decreased ALFF in the right inferior parietal lobule (IPL), bilateral orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), while increased ALFF in the visual cortex, left sensorimotor cortex and fusiform gyrus. Across the Slow-4 and Slow-5, results differed significantly in the OFC, DLPFC, thalamus and caudate in comparison to typical frequency band; and Slow-4 showed greater differences. In addition, negative correlations of behavior performance and ALFF patterns were found mainly in the right IPL across the typical frequency band. These observations provided novel insights about the physiological responses of SD, identified how it disturbs the brain rhythms, and linked SD with frequency-dependent alterations in amplitude patterns.  相似文献   

4.
Our previous studies have shown that a specially designed, so-called synchronization modulation electric field can entrain active transporter Na/K pumps in the cell membrane. This approach was previously developed in a study of single cells using a voltage clamp to monitor the pump currents. We are now expanding our study from isolated single cells to aggregated cells in a 3-dimensional cell matrix, through the use of a tissue slice from the rat heart. The slice is about 150 μm in thickness, meaning the slices contain many cell layers, resulting in a simplified 3-dimensional system. A fluorescent probe was used to identify the membrane potential and the ionic concentration gradients across the cell membrane. In spite of intrinsic cell-to-cell interactions and the difficulty in stimulating cell aggregation in the tissue slice, the oscillating electric field increased the intracellular fluorescent intensity, indicating elevation of the cell ionic concentration and hyperpolarization of the cell membrane. Blockage of these changes by ouabain confirmed that the results are directly related to Na/K pumps. These results along with the backward modulation indicate that the synchronization modulation electric field can influence the Na/K pumps in tissue cells of a 3-dimensional matrix and therefore hyperpolarize the cell membrane.  相似文献   

5.
脑深部电刺激是近年来神经中枢疾病治疗的一项新技术,具有可逆性、参数可调、对组织非破坏性等特点.目前,脑深部电刺激的治疗对象主要有帕金森症患者、癫痫患者以及各种难治性疼痛患者.本文综述了脑深部电刺激的概念、原理、优缺点,并对临床应用现状和应用前景进行了分析.  相似文献   

6.
The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel’s original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01–0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0–0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02–0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC.  相似文献   

7.
Walter Freeman, the self styled neurosurgeon, became famous (or infamous) for psychosurgery. The operation of frontal leucotomy swept through the world (with Freeman himself performing something like 18,000 cases) but it has tainted the whole idea of psychosurgery down to the present era. Modes of psychosurgery such as Deep Brain Stimulation and other highly selective neurosurgical procedures for neurological and psychiatric conditions are in ever-increasing use in current practice. The new, more exciting techniques are based in a widely held philosophical position on the relationship between the mind, brain and soul, which is the key to ethical debates in this area. Psychosurgery has always posed questions of responsibility, personality, character, identity, spirit, relationship, integrity, and human flourishing and they do not go away when we enter the brave new world of neuroethics and Deep Brain Stimulation.  相似文献   

8.
While high-frequency deep brain stimulation is a well established treatment for Parkinson’s disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies.  相似文献   

9.
Deep brain stimulation (DBS) therapy has become an essential tool for treating a range of brain disorders. In the resting state, DBS is known to regularize spike activity in and downstream of the stimulated brain target, which in turn has been hypothesized to create informational lesions. Here, we specifically test this hypothesis using repetitive joint articulations in two non-human Primates while recording single-unit activity in the sensorimotor globus pallidus and motor thalamus before, during, and after DBS in the globus pallidus (GP) GP-DBS resulted in: (1) stimulus-entrained firing patterns in globus pallidus, (2) a monophasic stimulus-entrained firing pattern in motor thalamus, and (3) a complete or partial loss of responsiveness to joint position, velocity, or acceleration in globus pallidus (75%, 12/16 cells) and in the pallidal receiving area of motor thalamus (ventralis lateralis pars oralis, VLo) (38%, 21/55 cells). Despite loss of kinematic tuning, cells in the globus pallidus (63%, 10/16 cells) and VLo (84%, 46/55 cells) still responded to one or more aspects of joint movement during GP-DBS. Further, modulated kinematic tuning did not always necessitate modulation in firing patterns (2/12 cells in globus pallidus; 13/23 cells in VLo), and regularized firing patterns did not always correspond to altered responses to joint articulation (3/4 cells in globus pallidus, 11/33 cells in VLo). In this context, DBS therapy appears to function as an amalgam of network modulating and network lesioning therapies.  相似文献   

10.

Objective

To describe three DBS cases which presented with new side effects or loss of benefit from stimulation after long-term follow-up and to discuss the potential contributing factors.

Methods

A University of Florida (UF) database (INFORM) search was performed, identifying three patients, two Parkinson''s disease (PD) and one Essential Tremor (ET), with an unexpected change in long-term programming thresholds as compared to initial evaluation. Clinical follow-up, programming, imaging studies, and lead measurements were reviewed. The UF Institutional Review Board (IRB) approved this study.

Results

A substantial increase in the 3rd ventricular width (120%), Evans index (6%), ventricular index (5%), and cella media index (17%) was uncovered. A change in thresholds across lead contacts with a decrease in current densities as well as a relative lateral change of lead location was also observed. Hardware-related complications, lead migration, and impedance variability were not identified.

Conclusions

Potential factors contributing to long-term side effects should be examined during a DBS troubleshooting assessment. Clinicians should be aware that in DBS therapy there is delivery of electricity to a changing brain, and atrophy may possibly affect DBS programming settings as part of long-term follow-up.  相似文献   

11.
12.
深部脑刺激(deep brain stimulation,DBS)已成为治疗帕金森病等运动障碍疾病的常规方法之一,并且在许多其他神经和精神疾病的治疗中也具有良好的应用前景.但是,目前常规DBS采用单通道恒定脉冲间隔的高频刺激(high frequency stimulation,HFS),刺激模式缺少多样化,限制了DBS在临床上的推广应用.为了开发更多DBS刺激模式,用于改善疗效、拓展应用范围、并节省刺激器的电能,近年来研究人员基于去同步调控机制,在脉冲序列的时间模式和空间排布两方面开发了DBS新模式.主要包括:变频序列(包括规则变频和随机变频)、不同空间位点上的多通道异步刺激以及变频和多通道两者的结合.这些新刺激模式能够提高DBS的临床疗效、降低刺激能耗,在帕金森病以及癫痫、强迫症和微意识障碍等其他脑疾病的治疗中都展现了良好的应用前景.更值得关注的是,多通道异步刺激不仅在刺激期间具有更好的即时疗效,而且刺激结束后还能长时间保持疗效,具有刺激后效应.这个特性突破了常规DBS主要为即时效应的局限性,展现了DBS新前景.本文在概述常规DBS模式及其去同步调控机制的基础上,综述变频脉冲刺激和...  相似文献   

13.
In order to visualize the global and downstream neuronal responses to deep brain stimulation (DBS) at various targets, we have developed a protocol for using blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) to image rodents with simultaneous DBS. DBS fMRI presents a number of technical challenges, including accuracy of electrode implantation, MR artifacts created by the electrode, choice of anesthesia and paralytic to minimize any neuronal effects while simultaneously eliminating animal motion, and maintenance of physiological parameters, deviation from which can confound the BOLD signal. Our laboratory has developed a set of procedures that are capable of overcoming most of these possible issues. For electrical stimulation, a homemade tungsten bipolar microelectrode is used, inserted stereotactically at the stimulation site in the anesthetized subject. In preparation for imaging, rodents are fixed on a plastic headpiece and transferred to the magnet bore. For sedation and paralysis during scanning, a cocktail of dexmedetomidine and pancuronium is continuously infused, along with a minimal dose of isoflurane; this preparation minimizes the BOLD ceiling effect of volatile anesthetics. In this example experiment, stimulation of the subthalamic nucleus (STN) produces BOLD responses which are observed primarily in ipsilateral cortical regions, centered in motor cortex. Simultaneous DBS and fMRI allows the unambiguous modulation of neural circuits dependent on stimulation location and stimulation parameters, and permits observation of neuronal modulations free of regional bias. This technique may be used to explore the downstream effects of modulating neural circuitry at nearly any brain region, with implications for both experimental and clinical DBS.  相似文献   

14.
Adaptive deep brain stimulation (aDBS) has the potential to improve the treatment of Parkinson''s disease by optimizing stimulation in real time according to fluctuating disease and medication state. In the present realization of adaptive DBS we record and stimulate from the DBS electrodes implanted in the subthalamic nucleus of patients with Parkinson''s disease in the early post-operative period. Local field potentials are analogue filtered between 3 and 47 Hz before being passed to a data acquisition unit where they are digitally filtered again around the patient specific beta peak, rectified and smoothed to give an online reading of the beta amplitude. A threshold for beta amplitude is set heuristically, which, if crossed, passes a trigger signal to the stimulator. The stimulator then ramps up stimulation to a pre-determined clinically effective voltage over 250 msec and continues to stimulate until the beta amplitude again falls down below threshold. Stimulation continues in this manner with brief episodes of ramped DBS during periods of heightened beta power.Clinical efficacy is assessed after a minimum period of stabilization (5 min) through the unblinded and blinded video assessment of motor function using a selection of scores from the Unified Parkinson''s Rating Scale (UPDRS). Recent work has demonstrated a reduction in power consumption with aDBS as well as an improvement in clinical scores compared to conventional DBS. Chronic aDBS could now be trialed in Parkinsonism.  相似文献   

15.
深部脑刺激(deep brain stimulation,DBS)已在临床上广泛用于治疗帕金森病等疾病引起的运动障碍,它在难治性癫痫、顽固性强迫症等其他脑中枢神经系统疾病的治疗上也展现出良好的应用前景.经过30多年的临床应用、动物实验和计算模型仿真等多方面的研究,DBS的机制也逐渐明朗.虽然尚无定论,但已取得许多重要进展.本文从电生理角度分析和总结了有关DBS机制的发展历程.从早期的抑制论和兴奋论到目前主导的调控论;从关注刺激位点的神经元活动,到发现神经元胞体与轴突活动的去耦合,再到高频刺激诱导的间歇性轴突阻滞,以及由此轴突活动可能导致的投射区神经元群体的去同步活动.这一系列研究进展表明DBS具有复杂的神经网络调控机制.了解DBS的作用机制对于提高其疗效、开发新刺激模式以及扩大临床应用的范围都具有重要意义.  相似文献   

16.
Synchronization modulation (SM) electric field has been shown to effectively activate function of Na+/K+ pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1–2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na+ concentration gradient built by the Na+/K+ pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.  相似文献   

17.
Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI.  相似文献   

18.
深部脑刺激器(deep brain stimulator),也经常被称为脑起搏器,是可植入人体设备,并连续不断地传送刺激脉冲到深部脑组织的特定区域,即所谓的深部脑刺激(deep brain stimulation,DBS).迄今为止,深部脑刺激是治疗严重顽固抗药性运动障碍疾病(如帕金森病,原发性震颤及肌张力异常等)的最有效的外科治疗手段之一.此外,广大的科研工作者也不断地探索应用DBS治疗其他神经及精神异常(如,癫痫和强迫症)的新的临床应用.尽管应用DBS治疗运动障碍非常有效,并也迅速被探索性地应用到其他神经障碍治疗中,但其作用机制仍然不是十分清楚,成为学者们争论的热点.DBS治疗效果的作用机制通常有两种基本的观点:高频刺激抑制学说及高频刺激兴奋学说.基于最近发表的关于中枢神经系统内的高频刺激效应的资料、数据及相关评论,两种机制共存并发挥作用的DBS作用假说被提出,认为DBS通过施加高频刺激干扰并控制了核团病理性紊乱随机活动,同时施加兴奋性刺激到其他基底节的网络,以实现对帕金森病的治疗.  相似文献   

19.
Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.  相似文献   

20.
In previously reported work, we developed a new technique, synchronization modulation, to electrically activate Na/K pump molecules. The fundamental mechanism involved in this technique is a dynamic entrainment procedure of the pump molecules, carried out in a stepwise pattern. The entrainment procedure consists of two steps: synchronization and modulation. We theoretically predicted that the pump functions can be activated exponentially as a function of the membrane potential. We have experimentally demonstrated synchronization of the Na/K pump molecules and acceleration of their pumping rates by many fold through use of voltage-clamp techniques, directly monitoring the pump currents. We further applied this technique to intact skeletal muscle fibers from amphibians and found significant effects on the membrane resting potential. Here, we extend our study to intact mammalian cardiomyocytes. We employed a noninvasive confocal microscopic fluorescent imaging technique to monitor electric field–induced changes in ionic concentration gradient and membrane resting potential. Our results further confirm that the well-designed synchronization modulation electric field can effectively accelerate the Na/K pumping rate, increasing the ionic concentration gradient across the cell membrane and hyperpolarizing the membrane resting potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号