首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small G proteins of the Rho/Rac/Cdc42 family are associated with lipid membranes through their prenylated C termini. Alternatively, these proteins form soluble complexes with GDI proteins. To assess how this membrane partitioning influences the activation of Rac by guanine nucleotide exchange factors, GDP-to-GTP exchange reactions were performed in the presence of liposomes using different forms of Rac-GDP. We show that both non-prenylated Rac-GDP and the soluble complex between prenylated Rac-GDP and GDI are poorly activated by the Dbl homology-pleckstrin homology (DH-PH) domain of the exchange factor Tiam1, whereas prenylated Rac-GDP bound to liposomes is activated about 10 times more rapidly. Sedimentation experiments with liposomes reveal that the DH-PH region of Tiam1 forms, with nucleotide-free prenylated Rac, a membrane-bound complex from which GDI is excluded. Taken together, these experiments demonstrate that the dissociation of Rac-GDP from GDI and its translocation to membrane lipids favor DH-PH-catalyzed nucleotide exchange because the steric hindrance caused by GDI is relieved and because the membrane environment favors functional interaction between the DH-PH domain and the small G protein.  相似文献   

2.
Rho GTPases are activated by a family of guanine nucleotide exchange factors (GEFs) known as Dbl family proteins. The structural basis for how GEFs recognize and activate Rho GTPases is presently ill defined. Here, we utilized the crystal structure of the DH/PH domains of the Rac-specific GEF Tiam1 in complex with Rac1 to determine the structural elements of Rac1 that regulate the specificity of this interaction. We show that residues in the Rac1 beta2-beta3 region are critical for Tiam1 recognition. Additionally, we determined that a single Rac1-to-Cdc42 mutation (W56F) was sufficient to abolish Rac1 sensitivity to Tiam1 and allow recognition by the Cdc42-specific DH/PH domains of Intersectin while not impairing Rac1 downstream activities. Our findings identified unique GEF specificity determinants in Rac1 and provide important insights into the mechanism of DH/PH selection of GTPase targets.  相似文献   

3.
Rho family GTPases play roles in cytoskeletal organization and cellular transformation. Tiam1 is a member of the Dbl family of guanine nucleotide exchange factors that activate Rho family GTPases. These exchange factors have in common a catalytic Dbl homology and adjacent pleckstrin homology domain. Previous structural studies suggest that the pleckstrin domain, a putative phosphoinositide-binding site, may serve a regulatory function. We identified ascorbyl stearate as a compound that binds to the pleckstrin domain of p120 Ras GTPase-activating protein. Furthermore, ascorbyl stearate appears to be a general pleckstrin domain ligand, perhaps by mimicking an endogenous amphiphilic ligand. Tiam1 nucleotide exchange activity was greatly stimulated by ascorbyl stearate. Certain phosphoinositides also stimulated Tiam1 activity but were less potent than ascorbyl stearate. Tiam1 contains an additional N-terminal pleckstrin domain, but only the C-terminal pleckstrin domain was required for activation. Our results suggest that the pleckstrin domains of Dbl-type proteins may not only be involved in subcellular localization but may also directly regulate the nucleotide exchange activity of an associated Dbl homology domain. In addition, this paper introduces ascorbyl stearate as a pleckstrin domain ligand that can modulate the activity of certain pleckstrin domain-containing proteins.  相似文献   

4.
Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. While it is known that the DH domain is the principal catalytic subunit, recent biochemical data indicate that for some Dbl-family proteins, such as Dbs and Trio, PH domains may cooperate with their associated DH domains in promoting guanine nucleotide exchange of Rho GTPases. In order to gain an understanding of the involvement of these PH domains in guanine nucleotide exchange, we have determined the crystal structure of a DH/PH fragment from Dbs in complex with Cdc42. The complex features the PH domain in a unique conformation distinct from the PH domains in the related structures of Sos1 and Tiam1.Rac1. Consequently, the Dbs PH domain participates with the DH domain in binding Cdc42, primarily through a set of interactions involving switch 2 of the GTPase. Comparative sequence analysis suggests that a subset of Dbl-family proteins will utilize their PH domains similarly to Dbs.  相似文献   

5.
6.
7.
Heo J  Thapar R  Campbell SL 《Biochemistry》2005,44(17):6573-6585
Vav proteins are Rho GTPase-specific guanine nucleotide exchange factors (GEFs) that are distinguished by the tandem arrangement of Dbl homology (DH), Pleckstrin homology (PH), and cysteine rich domains (CRD). Whereas the tandem DH-PH arrangement is conserved among Rho GEFs, the presence of the CRD is unique to Vav family members and is required for efficient nucleotide exchange. We provide evidence that Vav2-mediated nucleotide exchange of Rho GTPases follows the Theorell-Chance mechanism in which the Vav2.Rho GTPase complex is the major species during the exchange process and the Vav2.GDP-Mg(2+).Rho GTPase ternary complex is present only transiently. The GTPase specificity for the DH-PH-CRD Vav2 in vitro follows this order: Rac1 > Cdc42 > RhoA. Results obtained from fluorescence anisotropy and NMR chemical shift mapping experiments indicate that the isolated Vav1 CRD is capable of directly associating with Rac1, and residues K116 and S83 that are in the proximity of the P-loop and the guanine base either are part of this binding interface or undergo a conformational change in response to CRD binding. The NMR studies are supported by kinetic measurements on Rac1 mutants S83A, K116A, and K116Q and Vav2 CRD mutant K533A in that these mutants affect both the initial binding event of Vav2 with Rac1 (k(on)) and the rate-limiting dissociation of Vav2 from the Vav2.Rac1 binary complex (thereby influencing the enzyme turnover number, k(cat)). The results suggest that the CRD domain in Vav proteins plays an active role, affecting both the k(on) and the k(cat) for Vav-mediated nucleotide exchange on Rho GTPases.  相似文献   

8.
Normally, Rho GTPases are activated by the removal of bound GDP and the concomitant loading of GTP catalyzed by members of the Dbl family of guanine nucleotide exchange factors (GEFs). This family of GEFs invariantly contain a Dbl homology (DH) domain adjacent to a pleckstrin homology (PH) domain, and while the DH domain usually is sufficient to catalyze nucleotide exchange, possible roles for the conserved PH domain remain ambiguous. Here we demonstrate that the conserved PH domains of three distinct Dbl family proteins, intersectin, Dbs, and Tiam1, selectively bind lipid vesicles only when phosphoinositides are present. While the PH domains of intersectin and Dbs promiscuously bind several multiphosphorylated phosphoinositides, Tiam1 selectively interacts with phosphatidylinositol 3-phosphate (K(D) approximately 5-10 microm). In addition, and in contrast to recent reports, catalysis of nucleotide exchange on nonprenylated Rac1 provided by various extended portions of Tiam1 is not influenced by (a) soluble phosphoinositide head groups, (b) dibutyl versions of phosphoinositides, or (c) lipid vesicles containing phosphoinositides. Likewise, GEF activity afforded by DH/PH fragments of intersectin and Dbs are also not altered by phosphoinositide interactions. These results strongly suggest that unless all relevant components are localized to a lipid membrane surface, Dbl family GEFs generally are not intrinsically modulated by binding phosphoinositides.  相似文献   

9.
The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3beta homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.  相似文献   

10.
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 Å resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network.  相似文献   

11.
Tiam1 (T-lymphoma invasion and metastasis 1) is one of the known guanine nucleotide (GDP/GTP) exchange factors (GEFs) for Rho GTPases (e.g., Rac1) and is expressed in breast tumor cells (e.g., SP-1 cell line). Immunoprecipitation and immunoblot analyses indicate that Tiam1 and the cytoskeletal protein, ankyrin, are physically associated as a complex in vivo. In particular, the ankyrin repeat domain (ARD) of ankyrin is responsible for Tiam1 binding. Biochemical studies and deletion mutation analyses indicate that the 11-amino acid sequence between amino acids 717 and 727 of Tiam1 ((717)GEGTDAVKRS(727)L) is the ankyrin-binding domain. Most importantly, ankyrin binding to Tiam1 activates GDP/GTP exchange on Rho GTPases (e.g., Rac1).Using an Escherichia coli-derived calmodulin-binding peptide (CBP)-tagged recombinant Tiam1 (amino acids 393-728) fragment that contains the ankyrin-binding domain, we have detected a specific binding interaction between the Tiam1 (amino acids 393-738) fragment and ankyrin in vitro. This Tiam1 fragment also acts as a potent competitive inhibitor for Tiam1 binding to ankyrin. Transfection of SP-1 cell with Tiam1 cDNAs stimulates all of the following: (1) Tiam1-ankyrin association in the membrane projection; (2) Rac1 activation; and (3) breast tumor cell invasion and migration. Cotransfection of SP1 cells with green fluorescent protein (GFP)-tagged Tiam1 fragment cDNA and Tiam1 cDNA effectively blocks Tiam1-ankyrin colocalization in the cell membrane, and inhibits GDP/GTP exchange on Rac1 by ankyrin-associated Tiam1 and tumor-specific phenotypes. These findings suggest that ankyrin-Tiam1 interaction plays a pivotal role in regulating Rac1 signaling and cytoskeleton function required for oncogenic signaling and metastatic breast tumor cell progression.  相似文献   

12.
Using biochemical assays to determine the activation state of Rho-like GTPases, we show that the guanine nucleotide exchange factor Tiam1 functions as a specific activator of Rac but not Cdc42 or Rho in NIH3T3 fibroblasts. Activation of Rac by Tiam1 induces an epithelial-like morphology with functional cadherin-based adhesions and inhibits migration of fibroblasts. This epithelial phenotype is characterized by Rac-mediated effects on Rho activity. Transient PDGF-induced as well as sustained Rac activation by Tiam1 or V12Rac downregulate Rho activity. We found that Cdc42 also downregulates Rho activity. Neither V14Rho or N19Rho affects Rac activity, suggesting unidirectional signaling from Rac towards Rho. Downregulation of Rho activity occurs independently of Rac- induced cytoskeletal changes and cell spreading. Moreover, Rac effector mutants that are defective in mediating cytoskeleton changes or Jun kinase activation both downregulate Rho activity, suggesting that neither of these Rac signaling pathways are involved in the regulation of Rho. Restoration of Rho activity in Tiam1-expressing cells by expression of V14Rho results in reversion of the epithelioid phenotype towards a migratory, fibroblastoid morphology. We conclude that Rac signaling is able to antagonize Rho activity directly at the GTPase level, and that the reciprocal balance between Rac and Rho activity determines cellular morphology and migratory behavior in NIH3T3 fibroblasts.  相似文献   

13.
Vav and Sos1 are Dbl family guanine nucleotide exchange factors, which activate Rho family GTPases in response to phosphatidylinositol 3-kinase products. A pleckstrin homology domain adjacent to the catalytic Dbl homology domain via an unknown mechanism mediates the effects of phosphoinositides on guanine nucleotide exchange activity. Here we tested the possibility that phosphatidylinositol 3-kinase substrates and products control an interaction between the pleckstrin homology domain and the Dbl homology domain, thereby explaining the inhibitory effects of phosphatidylinositol 3-kinase substrates and stimulatory effects of the products. Binding studies using isolated fragments of Vav and Sos indicate phosphatidylinositol 3-kinase substrate promotes the binding of the pleckstrin homology domain to the Dbl homology domain and blocks Rac binding to the DH domain, whereas phosphatidylinositol 3-kinase products disrupt the Dbl homology/pleckstrin homology interactions and permit Rac binding. Additionally, Lck phosphorylation of Vav, a known activating event, reduces the affinities between the Vav Dbl homology and pleckstrin homology domains and permits Rac binding. We also show Vav activation in cells, as monitored by phosphorylation of Vav, Vav association with phosphatidylinositol 3,4,5-trisphosphate, and Vav guanine nucleotide exchange activity, is blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest the molecular mechanisms for activation of Vav and Sos1 require disruption of inhibitory intramolecular interactions involving the pleckstrin homology and Dbl homology domains.  相似文献   

14.
《Cellular signalling》2014,26(3):483-491
The Rho family of GTPases consists of several small proteins that have been described as molecular switches, playing important roles in a wide variety of fundamental cellular processes and in human diseases such as cancer. These proteins, active in the GTP conformation and inactive in the GDP form, are in turn regulated by guanine nucleotide exchange factors (GEFs), guanine nucleotide activating proteins (GAPs) and guanine dissociation inhibitors (GDIs). Two decades ago, Tiam1 (T-lymphoma invasion and metastasis) was identified as a GEF specific for Rac1 activation, but also for Cdc42 and in a lesser extent RhoA.Acting principally upstream of Rac1, Tiam1 is mainly involved in the regulation of Rac1 mediated signaling pathways including cytoskeletal activities, cell polarity, endocytosis and membrane trafficking, cell migration, adhesion and invasion, cell growth and survival, metastasis and carcinogenesis. However, given the large number of protein interaction domains found in its structure, it is possible that Tiam1 affects cellular processes in another way than through its GEF activity by interactions with other signaling proteins.Due to its functional diversity, Tiam1 is involved in multiple steps of tumorigenesis.As its name suggests, Tiam1 has been shown to increase T-cell lymphoma invasion and metastasis. It also promotes migration of fibroblasts, neuronal and cancer cells. On the contrary, Tiam1-induced cell adhesion has also been described, as opposed to cell migration. Moreover, studies indicate that Tiam1 is involved in both anti-apoptotic and pro-apoptotic mechanisms.While increasing evidence has demonstrated Tiam1's contribution to tumorigenesis and metastasis, others suggest that Tiam1 could have anti-cancer properties.In the present review, we discuss the current knowledge about the controversial roles of Tiam1 in cellular signaling. In particular, we will focus on Tiam1's regulation, its biological functions and implication in cancer.  相似文献   

15.
Rac plays a pivotal role in the assembly of the superoxide-generating NADPH oxidase of phagocytes. In resting cells, Rac is found in the cytosol in complex with Rho GDP dissociation inhibitor (RhoGDI). NADPH oxidase assembly involves dissociation of the Rac.RhoGDI complex and translocation of Rac to the membrane. We reported that liposomes containing high concentrations of monovalent anionic phospholipids cause Rac.RhoGDI complex dissociation ( Ugolev, Y., Molshanski-Mor, S., Weinbaum, C., and Pick, E. (2006) J. Biol. Chem. 281, 19204-19219 ). We now designed an in vitro model mimicking membrane phospholipid remodeling during phagocyte stimulation in vivo. We showed that liposomes of "resting cell membrane" composition (less than 20 mol % monovalent anionic phospholipids), supplemented with 1 mol % of polyvalent anionic phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) in conjunction with constitutively active forms of the guanine nucleotide exchange factors (GEFs) for Rac, Trio, or Tiam1 and a non-hydrolyzable GTP analogue, cause dissociation of Rac1(GDP).RhoGDI complexes, GDP to GTP exchange on Rac1, and binding of Rac1(GTP) to the liposomes. Complexes were not dissociated in the absence of GEF and GTP, and optimal dissociation required the presence of PtdIns(3,4,5)P(3) in the liposomes. Dissociation of Rac1(GDP).RhoGDI complexes was correlated with the affinity of particular GEF constructs, via the N-terminal pleckstrin homology domain, for PtdIns(3,4,5)P(3) and involved GEF-mediated GDP to GTP exchange on Rac1. Phagocyte membranes enriched in PtdIns(3,4,5)P(3) responded by NADPH oxidase activation upon exposure in vitro to Rac1(GDP).RhoGDI complexes, p67(phox), GTP, and Rac GEF constructs with affinity for PtdIns(3,4,5)P(3) at a level superior to that of native membranes.  相似文献   

16.
The small GTPases Rho, Rac, and Cdc42 are monoglucosylated at effector domain amino acid threonine 37/35 by Clostridium difficile toxins A and B. Glucosylation renders the Rho proteins inactive by inhibiting effector coupling. To understand the functional consequences, effects of glucosylation on subcellular distribution and cycling of Rho GTPases between cytosol and membranes were analyzed. In intact cells and in cell lysates, glucosylation leads to a translocation of the majority of RhoA GTPase to the membranes whereas a minor fraction is monomeric in the cytosol without being complexed with the guanine nucleotide dissociation inhibitor (GDI-1). Rho complexed with GDI-1 is not substrate for glucosylation, and modified Rho does not bind to GDI-1. However, a membranous factor inducing release of Rho from the GDI complex makes cytosolic Rho available as a substrate for glucosylation. The binding of glucosylated RhoA to the plasma membranes is saturable, competable with unmodified Rho-GTPgammaS guanosine 5'-O-(3-thiotriphosphate), and takes place at a membrane protein with a molecular mass of about 70 kDa. Membrane-bound glucosylated Rho is not extractable by GDI-1 as unmodified Rho is, leading to accumulation of modified Rho at membranous binding sites. Thus, in addition to effector coupling inhibition, glucosylation also inhibits Rho cycling between cytosol and membranes, a prerequisite for Rho activation.  相似文献   

17.
18.
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibits potent barrier protective effects on pulmonary endothelium, which are mediated by small GTPases Rac and Cdc42. However, upstream mechanisms of OxPAPC-induced small GTPase activation are not known. We studied involvement of Rac/Cdc42-specific guanine nucleotide exchange factors (GEFs) Tiam1 and betaPIX in OxPAPC-induced Rac activation, cytoskeletal remodeling, and barrier protective responses in the human pulmonary endothelial cells (EC). OxPAPC induced membrane translocation of Tiam1, betaPIX, Cdc42, and Rac, but did not affect intracellular distribution of Rho and Rho-specific GEF p115-RhoGEF. Protein depletion of Tiam1 and betaPIX using siRNA approach abolished OxPAPC-induced activation of Rac and its effector PAK1. EC transfection with Tiam1-, betaPIX-, or PAK1-specific siRNA dramatically attenuated OxPAPC-induced barrier enhancement, peripheral actin cytoskeletal enhancement, and translocation of actin-binding proteins cortactin and Arp3. These results show for the first time that Tiam1 and betaPIX mediate OxPAPC-induced Rac activation, cytoskeletal remodeling, and barrier protective response in pulmonary endothelium.  相似文献   

19.
20.
Accumulating evidence suggests that Rho family GTPases play critical roles in the organization of the nervous system. We previously identified a guanine nucleotide exchange factor of Rac1, STEF (SIF and Tiam 1-like exchange factor), which can induce ruffling membrane in KB cells and is predominantly expressed in the brain during development. Here, we characterize the molecular nature of STEF and its involvement in neurite growth. Deletion analyses revealed distinct roles for individual domains: PHnTSS for membrane association, DH for enzymatic activity, and PHc for promoting catalytic activity. Ectopic expression of STEF in N1E-115 neuroblastoma cells induced neurite-like processes containing F-actin, betaIII tubulin, MAP2, and GAP43 in a Rac1-dependent manner even under the serum-containing neurite-inhibiting conditions. We further found that a PHnTSS STEF fragment specifically inhibited the function of both STEF and Tiam1, a closely related Rac1 guanine nucleotide exchange factor. Suppression of endogenous STEF and Tiam1 activities in N1E-115 cells by ectopically expressed PHnTSS STEF resulted in inhibition of neurite outgrowth in serum-starved conditions, which usually induce neurite formation. Furthermore, these inhibitory effects were rescued by exogenously expressed STEF or Tiam1, suggesting that STEF and Tiam1 are involved in neurite formation through the activation of Rac1 and successive cytoskeletal reorganization of neuronal cells during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号