首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Septins are a family of 14 cytoskeletal proteins that dynamically form hetero-oligomers and organize membrane microdomains for protein complexes. The previously reported interactions with SNARE proteins suggested the involvement of septins in exocytosis. However, the contradictory results of up- or down-regulation of septin-5 in various cells and mouse models or septin-4 in mice suggested either an inhibitory or a stimulatory role for these septins in exocytosis. The involvement of the ubiquitously expressed septin-2 or general septin polymerization in exocytosis has not been explored to date. Here, by nano-LC with tandem MS and immunoblot analyses of the septin-2 interactome in mouse brain, we identified not only SNARE proteins but also Munc-18-1 (stabilizes assembled SNARE complexes), N-ethylmaleimide-sensitive factor (NSF) (disassembles SNARE complexes after each membrane fusion event), and the chaperones Hsc70 and synucleins (maintain functional conformation of SNARE proteins after complex disassembly). Importantly, α-soluble NSF attachment protein (SNAP), the adaptor protein that mediates NSF binding to the SNARE complex, did not interact with septin-2, indicating that septins undergo reorganization during each exocytosis cycle. Partial depletion of septin-2 by siRNA or impairment of septin dynamics by forchlorfenuron inhibited constitutive and stimulated exocytosis of secreted and transmembrane proteins in various cell types. Forchlorfenuron impaired the interaction between SNAP-25 and its chaperone Hsc70, decreasing SNAP-25 levels in cultured neuroendocrine cells, and inhibited both spontaneous and stimulated acetylcholine secretion in mouse motor neurons. The results demonstrate a stimulatory role of septin-2 and the dynamic reorganization of septin oligomers in exocytosis.  相似文献   

2.
3.
Over the past decades, numerous twin studies have revealed moderate to high heritability estimates for individual differences in a wide range of human traits, including cognitive ability, psychiatric disorders, and personality traits. Even factors that are generally believed to be environmental in nature have been shown to be under genetic control, albeit modest. Is such heritability also present in social traits that are conceptualized as causes and consequences of social interactions or in other ways strongly shaped by behavior of other people? Here we examine a population-based sample of 1,012 twins and relatives. We show that the genetic influence on generalized trust in other people (trust-in-others: h2 = 5%, ns), and beliefs regarding other people’s trust in the self (trust-in-self: h2 = 13%, ns), is virtually absent. As test-retest reliability for both scales were found to be moderate or high (r = .76 and r = .53, respectively) in an independent sample, we conclude that all variance in trust is likely to be accounted for by non-shared environmental influences. We show that, relative to cognitive abilities, psychiatric disorders, and classic personality variables, genetic influences are smaller for trust, and propose that experiences with or observations of the behavior of other people shape trust more strongly than other traits.  相似文献   

4.
Summary Previous studies of picro-dye reactions demonstrated wide variations in the binding of different dyes. Picro-Sirius Red F3BA was recommended because it colors all collagens intensely and is suitable for polarization microscopy. Recent publications on quantitative uses of this stain were surprising. To obtain further information on the chemical mechanisms of dye binding by proteins, 94 sulfonated azo dyes were tested under the conditions of the picro-Sirius Red F3BA reaction.Reaction patterns varied widely, from failure to compete successfully with picrate ions for binding sites to strong coloration of all tissue structures. Only a few dyes stained collagen, reticulum fibers and basement membranes intensely and selectively.The reactivity of dyes was determined by their molecular configuration and the nature and position of substituents. Correlation with physico-chemical data showed that dye binding is due to non-ionic interactions, i.e. van der Waals and dispersion forces and hydrophobic bonding. Coulomb forces do not impart affinity-increasing sulfonation actually decreases dye uptake — but draw dyes within reach of non-ionic sites. Bound dyes form aggregates with additional dye ions; the aggregation number can range from 2 to many powers of 10. Clearly, dye binding by proteins is not stoichiometric.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

5.
6.
7.
Although the genome of Haloferax volcanii contains genes (flgA1-flgA2) that encode flagellins and others that encode proteins involved in flagellar assembly, previous reports have concluded that H. volcanii is nonmotile. Contrary to these reports, we have now identified conditions under which H. volcanii is motile. Moreover, we have determined that an H. volcanii deletion mutant lacking flagellin genes is not motile. However, unlike flagella characterized in other prokaryotes, including other archaea, the H. volcanii flagella do not appear to play a significant role in surface adhesion. While flagella often play similar functional roles in bacteria and archaea, the processes involved in the biosynthesis of archaeal flagella do not resemble those involved in assembling bacterial flagella but, instead, are similar to those involved in producing bacterial type IV pili. Consistent with this observation, we have determined that, in addition to disrupting preflagellin processing, deleting pibD, which encodes the preflagellin peptidase, prevents the maturation of other H. volcanii type IV pilin-like proteins. Moreover, in addition to abolishing swimming motility, and unlike the flgA1-flgA2 deletion, deleting pibD eliminates the ability of H. volcanii to adhere to a glass surface, indicating that a nonflagellar type IV pilus-like structure plays a critical role in H. volcanii surface adhesion.To escape toxic conditions or to acquire new sources of nutrients, prokaryotes often depend on some form of motility. Swimming motility, a common means by which many bacteria move from one place to another, usually depends on flagellar rotation to propel cells through liquid medium (24, 26, 34). These motility structures are also critical for the effective attachment of bacteria to surfaces.As in bacteria, rotating flagella are responsible for swimming motility in archaea, and recent studies suggest that archaea, like bacteria, also require flagella for efficient surface attachment (37, 58). However, in contrast to bacterial flagellar subunits, which are translocated via a specialized type III secretion apparatus, archaeal flagellin secretion and flagellum assembly resemble the processes used to translocate and assemble the subunits of bacterial type IV pili (34, 38, 54).Type IV pili are typically composed of major pilins, the primary structural components of the pilus, and several minor pilin-like proteins that play important roles in pilus assembly or function (15, 17, 46). Pilin precursor proteins are transported across the cytoplasmic membrane via the Sec translocation pathway (7, 20). Most Sec substrates contain either a class I or a class II signal peptide that is cleaved at a recognition site that lies subsequent to the hydrophobic portion of the signal peptide (18, 43). However, the precursors of type IV pilins contain class III signal peptides, which are processed at recognition sites that precede the hydrophobic domain by a prepilin-specific peptidase (SPase III) (38, 43, 45). Similarly, archaeal flagellin precursors contain a class III signal peptide that is processed by a prepilin-specific peptidase homolog (FlaK/PibD) (3, 8, 10, 11). Moreover, flagellar assembly involves homologs of components involved in the biosynthesis of bacterial type IV pili, including FlaI, an ATPase homologous to PilB, and FlaJ, a multispanning membrane protein that may provide a platform for flagellar assembly, similar to the proposed role for PilC in pilus assembly (38, 44, 53, 54). These genes, as well as a number of others that encode proteins often required for either flagellar assembly or function (flaCDEFG and flaH), are frequently coregulated with the flg genes (11, 26, 44, 54).Interestingly, most sequenced archaeal genomes also contain diverse sets of genes that encode type IV pilin-like proteins with little or no homology to archaeal flagellins (3, 39, 52). While often coregulated with pilB and pilC homologs, these genes are never found in clusters containing the motility-specific flaCDEFG and flaH homologs; however, the proteins they encode do contain class III signal peptides (52). Several of these proteins have been shown to be processed by an SPase III (4, 52). Moreover, in Sulfolobus solfataricus and Methanococcus maripaludis, some of these archaeal type IV pilin-like proteins were confirmed to form surface filaments that are distinct from the flagella (21, 22, 56). These findings strongly suggest that the genes encode subunits of pilus-like surface structures that are involved in functions other than swimming motility.In bacteria, type IV pili are multifunctional filamentous protein complexes that, in addition to facilitating twitching motility, mediate adherence to abiotic surfaces and make close intercellular associations possible (15, 17, 46). For instance, mating between Escherichia coli in liquid medium has been shown to require type IV pili (often referred to as thin sex pili), which bring cells into close proximity (29, 30, 57). Recent work has shown that the S. solfataricus pilus, Ups, is required not only for efficient adhesion to surfaces of these crenarchaeal cells but also for UV-induced aggregation (21, 22, 58). Frols et al. postulate that autoaggregation is required for DNA exchange under these highly mutagenic conditions (22). Halobacterium salinarum has also been shown to form Ca2+-induced aggregates (27, 28). Furthermore, conjugation has been observed in H. volcanii, which likely requires that cells be held in close proximity for a sustained period to allow time for the cells to construct the cytoplasmic bridges that facilitate DNA transfer between them (35).To determine the roles played by haloarchaeal flagella and other putative type IV pilus-like structures in swimming and surface motility, surface adhesion, autoaggregation, and conjugation, we constructed and characterized two mutant strains of H. volcanii, one lacking the genes that encode the flagellins and the other lacking pibD. Our analyses indicate that although this archaeon was previously thought to be nonmotile (14, 36), wild-type (wt) H. volcanii can swim in a flagellum-dependent manner. Consistent with the involvement of PibD in processing flagellins, the peptidase mutant is nonmotile. Unlike nonhalophilic archaea, however, the flagellum mutant can adhere to glass as effectively as the wild type. Conversely, the ΔpibD strain fails to adhere to glass surfaces, strongly suggesting that in H. volcanii surface adhesion involves nonflagellar, type IV pilus-like structures.  相似文献   

8.
9.
10.
11.
12.
13.
1. The diatom Didymosphenia geminata has emerged in recent years as a globally invasive species. Although considered native to North America, reports of nuisance blooms have increased over the last decade.
2. Previously, we determined that D. geminata was ubiquitous in two major headwaters of the South Saskatchewan River Basin (SSRB), Alberta, Canada, but found it only bloomed at certain sites, including those immediately downstream from dam outfalls. To evaluate the role of dams in the abundance and blooming of D. geminata , we compared sites just below dams to unregulated upstream reference sites in six dammed rivers of the SSRB.
3. There was a high degree of seasonal variability in D. geminata abundance among sites, but statistical analyses showed a significant propensity for the diatom to have higher cell densities and an increased frequency of blooms at dam sites.
4. Important predictor variables of D. geminata abundance included dam presence, water clarity and total phosphorus concentration. When data from dam sites were analysed, a multiple regression model using mean discharge and pH as independent predictors explained 73% of the variation in D. geminata cell density.
5. Analysis of 3 years of data from one study river (Red Deer River) revealed consistently higher D. geminata cell densities at the dam site compared to the upstream reference. This analysis also showed that average cell density fluctuated by orders of magnitude from year-to-year.
6. Due to the ecological and aesthetic concerns regarding the global spread and blooming of D. geminata , we recommend that dams be viewed as key candidates for mitigating blooms in flow regulated systems.  相似文献   

14.
Astrocytes Are Target Cells for Endothelins and Sarafotoxin   总被引:8,自引:4,他引:4  
Endothelin-1, endothelin-3, and the snake venom toxin sarafotoxin S6b stimulate the hydrolysis of phosphatidylinositol by phospholipase C with similar potencies in primary cultures of astrocytes prepared from rat brain cortex. In indo 1-loaded cells, endothelin-1, endothelin-2, endothelin-3, and sarafotoxin induce the rapid mobilization of intracellular Ca2+ stores and promote a more slowly developing influx of Ca2+. These responses were insensitive to pertussis toxin and to inhibitors of cyclooxygenase and lipoxygenase. Similar actions of endothelins and sarafotoxin were observed using astrocytes from the cerebellum and glioma cells from the C6 and NN cell lines. The endothelin receptor of astrocytes differs from the receptor previously characterized in endothelial cells from brain microvessels in that it has a high affinity for endothelin-3. Thus, brain endothelin-1 and endothelin-3 have different target cells in the brain and may have different functions.  相似文献   

15.
16.
Three Pseudomonas strains were tested for the ability to sense and respond to nitrobenzoate and aminobenzoate isomers in chemotaxis assays. Pseudomonas putida PRS2000, a strain that grows on benzoate and 4-hydroxybenzoate by using the β-ketoadipate pathway, has a well-characterized β-ketoadipate-inducible chemotactic response to aromatic acids. PRS2000 was chemotactic to 3- and 4-nitrobenzoate and all three isomers of aminobenzoate when grown under conditions that induce the benzoate chemotactic response. P. putida TW3 and Pseudomonas sp. strain 4NT grow on 4-nitrotoluene and 4-nitrobenzoate by using the ortho (β-ketoadipate) and meta pathways, respectively, to complete the degradation of protocatechuate derived from 4-nitrotoluene and 4-nitrobenzoate. However, based on results of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase assays, both strains were found to use the β-ketoadipate pathway for the degradation of benzoate. Both strains were chemotactic to benzoate, 3- and 4-nitrobenzoate, and all three aminobenzoate isomers after growth with benzoate but not succinate. Strain TW3 was chemotactic to the same set of aromatic compounds after growth with 4-nitrotoluene or 4-nitrobenzoate. In contrast, strain 4NT did not respond to any aromatic acids when grown with 4-nitrotoluene or 4-nitrobenzoate, apparently because these substrates are not metabolized to the inducer (β-ketoadipate) of the chemotaxis system. The results suggest that strains TW3 and 4NT have a β-ketoadipate-inducible chemotaxis system that responds to a wide range of aromatic acids and is quite similar to that present in PRS2000. The broad specificity of this chemotaxis system works as an advantage in strains TW3 and 4NT because it functions to detect diverse carbon sources, including 4-nitrobenzoate.  相似文献   

17.
18.
19.
Summary The excitability of the squid giant axon was studied as a function of transmembrane hydrostatic pressure differences, the latter being altered by the technique of intracellular perfusion. When a KF solution was used as the internal medium, a pressure difference of about 15 cm water had very little effect on either the membrane potential or excitability. However, within a few minutes after introducing either a KCl-containing, a KBr-containing, or a colchicine-containing solution as the internal medium, with the same pressure difference across the membrane, the axon excitability was suppressed. In these cases, removal of the pressure difference restored the excitability, indicating that the structure of membrane was not irreversibly damaged. Electron-microscopic observations of these axons revealed that the perfusion with a KF solution or colchicine-containing solution preserves the submembranous cytoskeletal layer, whereas perfusion with a KCl or KBr solution dissolves it. These results suggest that the submembranous cytoskeletons including microtubules provide an important mechanical support to the excitable membrane but are not essential elements in channel activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号