共查询到20条相似文献,搜索用时 15 毫秒
1.
Christopher Sandom S?ren Faurby Brody Sandel Jens-Christian Svenning 《Proceedings. Biological sciences / The Royal Society》2014,281(1787)
The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132 000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial–interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary. 相似文献
2.
Global analysis of thermal tolerance and latitude in ectotherms 总被引:1,自引:0,他引:1
Sunday JM Bates AE Dulvy NK 《Proceedings. Biological sciences / The Royal Society》2011,278(1713):1823-1830
A tenet of macroecology is that physiological processes of organisms are linked to large-scale geographical patterns in environmental conditions. Species at higher latitudes experience greater seasonal temperature variation and are consequently predicted to withstand greater temperature extremes. We tested for relationships between breadths of thermal tolerance in ectothermic animals and the latitude of specimen location using all available data, while accounting for habitat, hemisphere, methodological differences and taxonomic affinity. We found that thermal tolerance breadths generally increase with latitude, and do so at a greater rate in the Northern Hemisphere. In terrestrial ectotherms, upper thermal limits vary little while lower thermal limits decrease with latitude. By contrast, marine species display a coherent poleward decrease in both upper and lower thermal limits. Our findings provide comprehensive global support for hypotheses generated from studies at smaller taxonomic subsets and geographical scales. Our results further indicate differences between terrestrial and marine ectotherms in how thermal physiology varies with latitude that may relate to the degree of temperature variability experienced on land and in the ocean. 相似文献
3.
Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences 总被引:4,自引:0,他引:4
A. TOWNSEND PETERSON 《Global Change Biology》2003,9(5):647-655
Climate change effects on biodiversity are already manifested, and yet no predictive knowledge characterizes the likely nature of these effects. Previous studies suggested an influence of topography on these effects, a possibility tested herein. Bird species with distributions restricted to montane (26 species) and Great Plains (19 species) regions of central and western North America were modeled, and climate change effects on their distributions compared: in general, plains species were more heavily influenced by climate change, with drastic area reductions (mode 35% of distributional area lost under assumption of no dispersal) and dramatic spatial movements (0–400 km shift of range centroid under assumption of no dispersal) of appropriate habitats. These results suggest an important generality regarding climate change effects on biodiversity, and provide useful guidelines for conservation planning. 相似文献
4.
Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot 总被引:9,自引:0,他引:9
G.F. Midgley† L. Hannah† D. Millar M.C. Rutherford L.W. Powrie 《Global Ecology and Biogeography》2002,11(6):445-451
Aim To compare theoretical approaches towards estimating risks of plant species loss to anthropogenic climate change impacts in a biodiversity hotspot, and to develop a practical method to detect signs of climate change impacts on natural populations. Location The Fynbos biome of South Africa, within the Cape Floristic Kingdom. Methods Bioclimatic modelling was used to identify environmental limits for vegetation at both biome and species scale. For the biome as a whole, and for 330 species of the endemic family Proteaceae, tolerance limits were determined for five temperature and water availability‐related parameters assumed critical for plant survival. Climate scenarios for 2050 generated by the general circulation models HadCM2 and CSM were interpolated for the region. Geographic Information Systems‐based methods were used to map current and future modelled ranges of the biome and 330 selected species. In the biome‐based approach, predictions of biome areal loss were overlayed with species richness data for the family Proteaceae to estimate extinction risk. In the species‐based approach, predictions of range dislocation (no overlap between current range and future projected range) were used as an indicator of extinction risk. A method of identifying local populations imminently threatened by climate change‐induced mortality is also described. Results A loss of Fynbos biome area of between 51% and 65% is projected by 2050 (depending on the climate scenario used), and roughly 10% of the endemic Proteaceae have ranges restricted to the area lost. Species range projections suggest that a third could suffer complete range dislocation by 2050, and only 5% could retain more than two thirds of their range. Projected changes to individual species ranges could be sufficient to detect climate change impacts within ten years. Main conclusions The biome‐level approach appears to underestimate the risk of species diversity loss from climate change impacts in the Fynbos Biome because many narrow range endemics suffer range dislocation throughout the biome, and not only in areas identified as biome contractions. We suggest that targeted vulnerable species could be monitored both for early warning signs of climate change and as empirical tests of predictions. 相似文献
5.
Gian-Reto Walther 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1549):2019-2024
There is ample evidence for ecological responses to recent climate change. Most studies to date have concentrated on the effects of climate change on individuals and species, with particular emphasis on the effects on phenology and physiology of organisms as well as changes in the distribution and range shifts of species. However, responses by individual species to climate change are not isolated; they are connected through interactions with others at the same or adjacent trophic levels. Also from this more complex perspective, recent case studies have emphasized evidence on the effects of climate change on biotic interactions and ecosystem services. This review highlights the ‘knowns’ but also ‘unknowns’ resulting from recent climate impact studies and reveals limitations of (linear) extrapolations from recent climate-induced responses of species to expected trends and magnitudes of future climate change. Hence, there is need not only to continue to focus on the impacts of climate change on the actors in ecological networks but also and more intensively to focus on the linkages between them, and to acknowledge that biotic interactions and feedback processes lead to highly complex, nonlinear and sometimes abrupt responses. 相似文献
6.
Timothy C. Bonebrake Carol L. Boggs Jeannie A. Stamberger Curtis A. Deutsch Paul R. Ehrlich 《Proceedings. Biological sciences / The Royal Society》2014,281(1793)
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. 相似文献
7.
Julia L. Blanchard Simon Jennings Robert Holmes James Harle Gorka Merino J. Icarus Allen Jason Holt Nicholas K. Dulvy Manuel Barange 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1605):2979-2989
Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species'' ecology. We couple a physical–biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30–60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28–89%. 相似文献
8.
Despite evidence that organismal distributions are shifting in response to recent climatic warming, we have little information on direct links between species' physiology and vulnerability to climate change. We demonstrate a positive relationship between upper thermal tolerance and its acclimatory ability in a well-defined clade of closely related European diving beetles. We predict that species with the lowest tolerance to high temperatures will be most at risk from the adverse effects of future warming, since they have both low absolute thermal tolerance and poor acclimatory ability. Upper thermal tolerance is also positively related to species' geographical range size, meaning that species most at risk are already the most geographically restricted ones, being endemic to Mediterranean mountain systems. Our findings on the relationship between tolerance and acclimatory ability contrast with results from marine animals, suggesting that generalizations regarding thermal tolerance and responses to future rapid climate change may be premature. 相似文献
9.
Pioneering efforts to predict shifts in species distribution under climate change used simple models based on the correlation between contemporary environmental factors and distributions. These models make predictions at coarse spatial scales and assume the constancy of present correlations between environment and distribution. Adaptive management of climate change impacts requires models that can make more robust predictions at finer spatio-temporal scales by accounting for processes that actually affect species distribution on heterogeneous landscapes. Mechanistic models of the distribution of both species and vegetation types have begun to emerge to meet these needs. We review these developments and highlight how recent advances in our understanding of relationships among the niche concept, species diversity and community assembly point the way towards more effective models for the impacts of global change on species distribution and community diversity. 相似文献
10.
We report the pattern of bryophyte distribution through the elevation gradient of three Canary Islands (Fuerteventura, Tenerife and Gomera) assessing their vulnerability risk to climate change. We considered a conservative scenario of upslope climatic shift of 200–400 m and a drop in the upper limit of the cloud belt from 1500 to 1000 m. Climate change vulnerability was analyzed from the overlap between the predicted shift in isotherms or cloud-belt edges and the current species range, following the Colwell and colleagues's model.Liverworts show narrower ranges and tend to live at lower elevations than mosses. Perennials and long-lived shuttle species establish in the upper localities. Many perennials and most of the long-lived shuttle species grow in cloud forests. Many annual shuttle species and colonists establish in the lowest localities. Colonists also occupy the harsh summit in the highest islands.In accordance with the Colwell model, most elements of this bryoflora appears vulnerable to rapid climatic change. Upland extinction and contraction challenges the bryoflora on the driest, lowest island Fuerteventura; range-shift gaps do this on the highest island Tenerife. Liverworts tend to be more vulnerable to range-shift gaps; mosses are more vulnerable to upland extinction. On the lowest island, perennials and long-lived shuttle species are more vulnerable to upland extinction; perennials are also vulnerable to range-shift gaps. Colonists are most vulnerable to upland contraction or extinction on the high islands Gomera and Tenerife. Annual shuttle species tend to be more vulnerable to lowland attrition on these high, most humid islands. Many elements of the bryoflora of the upper limit of the cloud forests appear to be vulnerable, while most of the flora of other cloud forest areas presumably will not be so affected, with the exception of the most restricted species.A simple model illustrates the feasibility of preliminary assessments of climate change on organisms which show a lack of published detailed information on their distribution and biology. This assessment gains by incorporating estimates of biological attributes. 相似文献
11.
There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky–eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail''s body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail''s upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models. 相似文献
12.
ABRAHAM J. MILLER-RUSHING †‡ TREVOR L. LLOYD-EVANS§ RICHARD B. PRIMACK PAUL SATZINGER 《Global Change Biology》2008,14(9):1959-1972
Past studies of bird migration times have shown great variation in migratory responses to climate change. We used 33 years of bird capture data (1970–2002) from Manomet, Massachusetts to examine variation in spring migration times for 32 species of North American passerines. We found that changes in first arrival dates – the unit of observation used in most studies of bird migration times – often differ dramatically from changes in the mean arrival date of the migration cohort as a whole. In our study, the earliest recorded springtime arrival date for each species occurred 0.20 days later each decade. In contrast, the mean arrival dates for birds of each species occurred 0.78 days earlier each decade. The difference in the two trends was largely explained by declining migration cohort sizes, a factor not examined in many previous studies. We found that changes in migration cohort or population sizes may account for a substantial amount of the variation in previously documented changes in migration times. After controlling for changes in migration cohort size, we found that climate variables, migration distance, and date of migration explained portions of the variation in migratory changes over time. In particular, short-distance migrants appeared to respond to changes in temperature, while mid-distance migrants responded particularly strongly to changes in the Southern Oscillation Index. The migration times of long-distance migrants tended not to change over time. Our findings suggest that previously reported changes in migration times may need to be reinterpreted to incorporate changes in migration cohort sizes. 相似文献
13.
In addition to assessing the impacts of CO2 doubling on environment and society, more consideration is needed to estimate extreme events or surprises. This is particularly important at the intersection of disciplines like climate and ecology because the potential for large discontinuities is high given all the possible climate/biota interactions. The vast disparities in scales encountered by those working in traditional ecology (typically 20 m) and climatology (typically 200 km) make diagnoses of such interactions difficult, but these can be addressed by an emerging research paradigm we call strategic cyclical scaling (SCS). The need to anticipate outlier events and assign them subjective probabilities suggests emphasis on interdisciplinary research associations. The desire to reduce societal vulnerability to such events suggests the need to build adaptive management and diverse economic activities into social organizations. The effectiveness of adaptation responses to anticipated climatic changes is complicated when consideration of transient changes, regional disturbances, large unforseeable natural fluctuations and surprises are considered. Slowing down the rate of disturbances and decreasing vulnerability are advocated as the most prudent responses to the prospect of human-induced climatic changes. 相似文献
14.
气候变化对鸟类影响的研究进展 总被引:1,自引:0,他引:1
气候变化对生物多样性的影响已成为热点问题.本文以鸟类为研究对象,根据鸟类受气候变化影响的最新研究成果,综述了气候变化对鸟类的分布、物候和种群等方面的影响.结果表明,在气候变化影响下,鸟类分布向高纬度或高海拔区移动,速度比以往加快,繁殖地和非繁殖地的分布移动变化并不相同,并且多数分布范围缩小,物候期发生复杂变化,种群数量下降明显.文章还讨论了该领域主要的预测和评估方法,以及进化适应等生物因素对气候变化预测结果的影响,除了以往单一的相关性模型外,目前应用最多的是集成模型,而未来最具发展潜力的是机理模型.进化适应方面的研究近来取得新进展,证实了生物个体积极应对气候变化影响的事实,从而对人为模型预测的准确性带来挑战.文章最后进行了总结和展望,结合国外研究经验和我国实际情况,提出一些建议:由于气候变化的影响及其研究是长期性的,从而对鸟类的历史监测数据提出很高的要求,当前我国急需建立一套长期、全面和可靠的鸟类数据监测系统;此外,人们需要综合评估现有各种预测模型的可靠性,在此基础上探索新的研究方法. 相似文献
15.
Miguel B. Araújo † Richard G. Pearson ‡ Wilfried Thuiller§ Markus Erhard¶ 《Global Change Biology》2005,11(9):1504-1513
Increasing concern over the implications of climate change for biodiversity has led to the use of species–climate envelope models to project species extinction risk under climate‐change scenarios. However, recent studies have demonstrated significant variability in model predictions and there remains a pressing need to validate models and to reduce uncertainties. Model validation is problematic as predictions are made for events that have not yet occurred. Resubstituition and data partitioning of present‐day data sets are, therefore, commonly used to test the predictive performance of models. However, these approaches suffer from the problems of spatial and temporal autocorrelation in the calibration and validation sets. Using observed distribution shifts among 116 British breeding‐bird species over the past ~20 years, we are able to provide a first independent validation of four envelope modelling techniques under climate change. Results showed good to fair predictive performance on independent validation, although rules used to assess model performance are difficult to interpret in a decision‐planning context. We also showed that measures of performance on nonindependent data provided optimistic estimates of models' predictive ability on independent data. Artificial neural networks and generalized additive models provided generally more accurate predictions of species range shifts than generalized linear models or classification tree analysis. Data for independent model validation and replication of this study are rare and we argue that perfect validation may not in fact be conceptually possible. We also note that usefulness of models is contingent on both the questions being asked and the techniques used. Implementations of species–climate envelope models for testing hypotheses and predicting future events may prove wrong, while being potentially useful if put into appropriate context. 相似文献
16.
17.
WISDOM DLAMINI 《Global Change Biology》2011,17(3):1425-1441
In a spatially explicit climate change impact assessment, a Bayesian network (BN) model was implemented to probabilistically simulate future response of the four major vegetation types in Swaziland. Two emission scenarios (A2 and B2) from an ensemble of three statistically downscaled coupled atmosphere‐ocean global circulation models (CSIRO‐Mk3, CCCma‐CGCM3 and UKMO‐HadCM3) were used to simulate possible changes in BN‐based environmental envelopes of major vegetation communities. Both physiographic and climatic data were used as predictors representing the 2020s, 2050s and the 2080s periods. A comparison of simulated vegetation distribution and the expert vegetation map under baseline conditions showed an overall correspondence of 97.7% and a Kappa coefficient of 0.966. Although the ensemble projections showed comparable trends during the 2020s, the results from the A2 storyline were more drastic indicating that grassland and the Lebombo bushveld will be impacted negatively as early as the 2020s with about 1 °C temperature increase. The bioclimatically suitable areas of all but one vegetation type decline drastically after about 2 °C warming, more so under the more severe A2 scenario and in particular during the 2080s. The sour bushveld is the only vegetation type that initially responds positively to warming by possibly encroaching to the highly vulnerable grassland areas. Vulnerability of vegetation is increased by the limited ability to migrate into suitable climates due to close affinity to certain geological formations and the fragmentation of the landscape by agriculture and other land uses. This is expected to have serious impacts on biodiversity in the country. Under warmer climates, the likely vegetation types to emerge are uncertain due to future novel combinations of climate and bedrock lithology. The strengths and limitations of the BN approach are also discussed. 相似文献
18.
Assessing household livelihood vulnerability to climate change: The case of Northwest Vietnam 总被引:1,自引:0,他引:1
This study applied livelihood vulnerability index (LVI) and livelihood effect index (LEI) to assess vulnerability from climate variability and change of three agricultural and natural resources dependent commune in northwest Vietnam, a country that is expected to bear some of the most severe impacts of climate change. Based on a survey of 335 farm household data, complemented with secondary data on climate factors, a composite index was calculated and differential vulnerabilities were compared. The results of the analysis suggest that one of the communities, “Pa Vay Su,” was more vulnerable than the others, particularly in relation to housing, knowledge and skills, socio-demographics, health and water security, social networks, and livelihood strategy. “Hien Luong” commune, on the other hand, was more vulnerable in relation to other LVI indicators with the exception of food security, climate variability, and natural disasters. “Moc Chau” community was more vulnerable in relation to water security, social demographic than Hien Luong commune. Overall, the article shows that three different vulnerability assessment indices can be broadly applied in comparable setting in other areas of country and they could usefully establish the basis for a nationally applicable index to identify and prioritize adaptation and mitigation needs. 相似文献
19.
Ongoing climate change is assumed to be exceptional because of its unprecedented velocity. However, new geophysical research suggests that dramatic climatic changes during the Late Pleistocene occurred extremely rapid, over just a few years. These abrupt climatic changes may have been even faster than contemporary ones, but relatively few continent‐wide extinctions of species have been documented for these periods. This raises questions about the ability of extant species to adapt to ongoing climate change. We propose that the advances in geophysical research challenge current views about species' ability to cope with climate change, and that lessons must be learned for modelling future impacts of climate change on species. 相似文献
20.
Aim To model long‐term trends in plant species distributions in response to predicted changes in global climate. Location Amazonia. Methods The impacts of expected global climate change on the potential and realized distributions of a representative sample of 69 individual Angiosperm species in Amazonia were simulated from 1990 to 2095. The climate trend followed the HADCM2GSa1 scenario, which assumes an annual 1% increase of atmospheric CO2 content with effects mitigated by sulphate forcing. Potential distributions of species in one‐degree grid cells were modelled using a suitability index and rectilinear envelope based on bioclimate variables. Realized distributions were additionally limited by spatial contiguity with, and proximity to, known record sites. A size‐structured population model was simulated for each cell in the realized distributions to allow for lags in response to climate change, but dispersal was not included. Results In the resulting simulations, 43% of all species became non‐viable by 2095 because their potential distributions had changed drastically, but there was little change in the realized distributions of most species, owing to delays in population responses. Widely distributed species with high tolerance to environmental variation exhibited the least response to climate change, and species with narrow ranges and short generation times the greatest. Climate changed most in north‐east Amazonia while the best remaining conditions for lowland moist forest species were in western Amazonia. Main conclusions To maintain the greatest resilience of Amazonian biodiversity to climate change as modelled by HADCM2GSa1, highest priority should be given to strengthening and extending protected areas in western Amazonia that encompass lowland and montane forests. 相似文献