首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal changes are major factors affecting environmental conditions which induce multiple stresses in plants, leading to changes in protein relative abundance in the complex cellular plant metabolic pathways. Proteomics was applied to study variations in proteome composition of Butea. superba tubers during winter, summer and rainy season throughout the year using two-dimensional polyacrylamide gel electrophoresis coupled with a nanoflow liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight tandem mass spectrometry. A total of 191 protein spots were identified and also classified into 12 functional groups. The majority of these were mainly involved in carbohydrate and energy metabolism (30.37 %) and defense and stress (18.32 %). The results exhibited the highest numbers of identified proteins in winter-harvested samples. Forty-five differential proteins were found in different seasons, involving important metabolic pathways. Further analysis indicated that changes in the protein levels were due mainly to temperature stress during summer and to water stress during winter, which affected cellular structure, photosynthesis, signal transduction and homeostasis, amino-acid biosynthesis, protein destination and storage, protein biosynthesis and stimulated defense and stress mechanisms involving glycolytic enzymes and relative oxygen species catabolizing enzymes. The proteins with differential relative abundances might induce an altered physiological status within plant tubers for survival. The work provided new insights into the better understanding of the molecular basis of plant proteomes and stress tolerance mechanisms, especially during seasonal changes. The finding suggested proteins that might potentially be used as protein markers in differing seasons in other plants and aid in selecting B. superba tubers with the most suitable medicinal properties in the future.  相似文献   

2.
At present, acid rain has become one of the top ten global environmental issues. Acid rain causes slower growth, injury, or decline of forests. Some dramatic effects on forests have been observed in south China since the late 1970s and the situation is deteriorating. We carried out a comparative proteomic analysis on Pinus massoniana Lamb, a staple tree species widely distributed in middle and south China to gain a better understanding of tree response to acid rain at molecular level. Two-year-old P. massoniana saplings were treated with simulated AR (SiAR) or control solution, respectively, for 8 months. The changes in total protein profile of P. massoniana leaves were studied using two-dimensional differential gel electrophoresis (2D-DIGE). Among the total protein spots reproducibly detected on each gel, 65 spots representing 28 proteins were identified to be differentially regulated. These proteins were annotated in various biological functions, such as photosynthesis and energy metabolism, secondary metabolism, protein stability, amino acid and nitrogen metabolism and defense. Down-regulation of four key enzymes in the Calvin cycle identified that biomass loss by SiAR was mainly due to the inhibition of carbon fixation. Primary energy metabolisms involved in sucrose biosynthesis, glycolytic pathway and Krebs cycle, etc., were also disturbed after SiAR treatment. Specifically, most of up-regulated proteins were related to secondary metabolism, protein stability and defense, suggesting that in response to SiAR stress, plants started a variety of metabolic pathways to prevent cells from damage. Different from the herbaceous plants suffering SiAR, it revealed that secondary metabolites in P. massoniana play pivotal roles against SiAR. Protemoic techniques were demonstrated a reliable and robust tool to expand our understanding of differentially expressed proteins associated with acid rain stress on P. massoniana. Functional analysis of these proteins further revealed biochemical and physiological basis of the plant in response to acid rain and would provide strategies for breeding new acid rain tolerant tree species. To our knowledge, it is the first proteome report on the forest plant suffering long-term acid rain stress.  相似文献   

3.
Sun G C  Zeng X P  Liu X J  Zhao P 《农业工程》2007,27(4):1283-1290
During the exposition to moderate high-temperature stress, photosynthetic rates and fluorescence of chlorophyll a were measured with a photosynthetic measurement system (Li-Cor 6400) and leaf chamber fluorometer (Li-Cor6400 LCF), respectively, in leaves of saplings, sun-adapted species (Schima superba), shade-adapted species (Cryptocarya concinna), and in mesophytic plant (Castanopsis hystrix) (42°C). The results showed that moderate high-temperature stress led to a decrease in Fv/Fm, namely the primary photochemical quantum efficiency, indicating that moderate high-temperature stress causes a partial inhibition of PSII. It also showed that such an effect was more severe in the shade-adapted plant C. concinna than in the sun-adapted species S. superba. However, except for the sun-grown leaves of C. concinna, the moderate high-temperature stress increased the photosynthetic rate of leaves at high light intensity. Simultaneously, less photoinhibition was found to occur under high-light intensity, suggesting that the capacity of resistant-photoinhibition was stimulated by moderate high-temperature stress. The quantum yield of PSII (ϕPSII) decreased in the sun-grown leaves of S. superba and C. hystrix but did not show any significant change in leaves of the shade plant C. concinna and shade-grown leaves of sun plant S. superba or the mesophytic plant C. hystrix because they already had a very low ϕPSII under this condition. Moderate high-temperature stress led to a decrease in ϕPSIICO2 ratios, an estimate of the quantum requirement for CO2 assimilation, in the sun plant S. superba and the mesophytic plant C. hystrix because they were associated with the dissipation of a lower fraction of excitation energy. However, no significant changes were found in shade plant C. concinna and in shade-grown leaves of the other examined plants. The effect of moderate high-temperature (42°C) on photosynthesis depends on species and leaf type (sun and shade leaves) in the saplings of subtropical broad-leaved trees.  相似文献   

4.
干旱胁迫对华北绣线菊和金山绣线菊光合能力的影响   总被引:3,自引:0,他引:3  
Liu HM  Che YS  Che DD  Yan YQ  Wu FZ 《应用生态学报》2010,21(8):2004-2009
分别采取轻度、中度、重度干旱胁迫和复水处理,研究华北绣线菊和金山绣线菊的光合能力动态变化;利用二维双向电泳与质谱鉴定等技术,分析鉴定干旱胁迫前后2种绣线菊蛋白质的差异表达,以及引起其光合能力改变的生理机制.结果表明:干旱胁迫处理显著影响了2种绣线菊的光合能力,最大光合速率、光补偿点和光饱和点逐渐下降,其干旱胁迫反应为渐进效应.轻度和中度干旱胁迫后,2种绣线菊的恢复能力较强;而重度干旱胁迫后的恢复能力较弱.经干旱胁迫诱导后,抗旱能力弱的金山绣线菊有6处蛋白点消失、11处新增蛋白点、13处蛋白点上调表达、4处蛋白点下调表达,均为低分子量酸性蛋白;其中由干旱诱导表达的3种差异蛋白分别为放氧增强蛋白因子1、2和1,5-二磷酸核酮糖羧化酶/加氧酶大亚基的降解片断.绣线菊抗旱能力的差异与干旱胁迫期间光合能力的变化有关.  相似文献   

5.
The proliferation of protein abundances under influence of seasonal changes are involved in cellular plant metabolic pathways. The protein profiles in relevant with seasonal variations in Butea superba leaves collected in winter, summer and rainy season were evaluated by two-dimensional polyacrylamide gel electrophoresis coupled with a nanoflow liquid chromatography coupled to electrospray ionization quadrupoletime- of-flight tandem mass spectrometry. The 84 proliferated protein spots were sum up of total proteins, which were found in 3 season-collected plant leaves and were classified into 11 functional groups. Eight proteins which exhibited the alteration of abundant levels in different seasons were found involved in carbohydrate and energy metabolism, photosynthesis, secondary metabolism, stress, RNA metabolism, ROS scavenging and detoxifying, and protein destination and storage. There were 2 proteins exhibited obviously isozyme polypeptide sequences. The variable physiological status within the plant leaf might be influenced by the quantitative and qualitative proliferated protein presences with response to seasonal changes and thus allowing plant to survive during severe abiotic stresses during seasonal changes.  相似文献   

6.
Molybdenum (Mo) is an essential micronutrient for plants. To obtain a better understanding of the molecular mechanisms of cold resistance enhanced by molybdenum application in winter wheat, we applied a proteomic approach to investigate the differential expression of proteins in response to molybdenum deficiency in winter wheat leaves under low-temperature stress. Of 13 protein spots that were identified, five spots were involved in the light reaction of photosynthesis, five were involved in the dark reaction of photosynthesis, and three were highly involved in RNA binding and protein synthesis. Before the application of cold stress, four differentially expressed proteins between the Mo deficiency (?Mo) vs. Mo application (+Mo) comparison are involved in carbon metabolism and photosynthetic electron transport. After 48 h of cold stress, nine differentially expressed proteins between the ?Mo vs. +Mo comparison are involved in carbon metabolism, photosynthetic electron transport, RNA binding, and protein synthesis. Under ?Mo condition, cold stress induced a more than twofold decrease in the accumulation of six differential proteins including ribulose bisphosphate carboxylase large-chain precursor, phosphoglycerate kinase, cp31BHv, chlorophyll a/b-binding protein, ribulose bisphosphate carboxylase small subunit, and ribosomal protein P1, whereas under +Mo condition cold stress only decreased the expression of RuBisCO large subunit, suggesting that Mo application might contribute to the balance or stability of these proteins especially under low-temperature stress and that Mo deficiency has greater influence on differential protein expression in winter wheat after low-temperature stress. Further investigations showed that Mo deficiency decreased the concentrations of chlorophyll a, chlorophyll b, and carotenoids; the maximum net photosynthetic rate; the apparent quantum yield; and carboxylation efficiency, even before the application of the cold stress, although the decrease rates were greater after 48 h of cold treatment, which is consistent with changes in the expressions of differential proteins in winter wheat under low-temperature stress. These findings provide some new evidence that Mo might be involved in the light and dark reaction of photosynthesis and protein synthesis.  相似文献   

7.
This study was designed to identify physiological responses and differential proteomic responses to salinity stress in roots of a salt-tolerant grass species, seashore paspalum (Paspalum vaginatum), and a salt-sensitive grass species, centipedegrass (Eremochloa ophiuroides). Plants of both species were exposed to salinity stress by watering the soil with 300 mM NaCl solution for 20 d in a growth chamber. The 2-DE analysis revealed that the abundance of 8 protein spots significantly increased and 14 significantly decreased in seashore paspalum, while 19 and 16 protein spots exhibited increase and decrease in abundance in centipedegrass, respectively. Eight protein spots that exhibited enhanced abundance in seashore paspalum under salinity stress were subjected to mass spectrometry analysis. Seven protein spots were successfully identified, they are peroxidase (POD, 2.36-fold), cytoplasmic malate dehydrogenase (cMDH, 5.84-fold), asorbate peroxidase (APX, 4.03-fold), two mitochondrial ATPSδ chain (2.26-fold and 4.78-fold), hypothetical protein LOC100274119 (5.01-fold) and flavoprotein wrbA (2.20-fold), respectively. Immunblotting analysis indicated that POD and ATPSδ chain were significantly up-regulated in seashore paspalum at 20 d of salinity treatment while almost no expression in both control and salt treatment of centipedegrass. These results indicated that the superior salinity tolerance in seashore paspalum, compared to centipedegrass, could be associated with a high abundance of proteins involved in ROS detoxification and energy metabolism.  相似文献   

8.
We analyzed the different cold-resistance species Spiraea trichocarpa Nakai and Spiraea bumalda ‘Goldmound’ for low-temperature protein expression, protein types identification, and investigated the cold resistance mechanisms under different levels of low temperature by two-dimensional gel electrophoresis (2-DE) and mass spectrometry. An average of 668 and 559 protein spots were detected by 2-DE of S. bumalda ‘Goldmound’ and S. trichocarpa Nakai, respectively, under different low-temperature treatments. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy identified 48 proteins, with varying expression, related to metabolism, amino acid synthesis, transportation, stress responses and oxidation–reduction reactions. The results showed that the photosynthesis of S. bumalda ‘Goldmound’ had been affected, enzymes (RuBisCO large and small subunits) involved in the Calvin cycle were up- and down-regulated, and ATP synthase in photophosphorylation was down-regulated. Cytosolic malate dehydrogenase expression weakened in the TCA cycle, while amino acid synthesis strengthened. The activity of four antioxidant enzymes (superoxide dismutase [Cu–Zn], L-ascorbate peroxidase, glutathione peroxidase and peroxidase) was reduced under varying low temperatures. Enzymes (ribulose-bisphosphate carboxylase and RuBisCO small chain precursor) involved in the photosynthesis of S. trichocarpa Nakai showed obvious up- and down-regulation under low temperatures. Cold treatment influenced the photosynthesis of S. trichocarpa Nakai and S. bumalda ‘Goldmound’, but the results showed significant differences between the two species, which were supposed to the fact that low temperature modified the metabolic mechanisms and led to the weaker cold resistance in S. bumalda ‘Goldmound’ than in S. trichocarpa Nakai.  相似文献   

9.
10.
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2‐DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI‐TOF‐MS and LC‐ESI‐MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.  相似文献   

11.
To better understand abscisic acid (ABA) regulation of the synthesis of chloroplast proteins in maize (Zea mays L.) in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE) and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C4 plants.  相似文献   

12.
The photosynthetic rate, light saturation point, light compensation point, changes in the MDA and SOD activities, and protein expression of two different drought-resistance species, Spiraea fritschiana and Spiraea trichocarpa, were assessed in this study. Furthermore, the drought-resistant physiological mechanisms of both species were analyzed at the protein level. The photosynthetic capacities of two Spiraea species decreased under drought stress, and the light saturation point and light compensation point decreased. However, their capacities to use weak light increased. Spiraea fritschiana, which demonstrated a stronger drought resistance, showed a better ability to adapt to weak light than S. trichocarpa. The content of MDA in S. fritschiana was notably lower than that in S. trichocarpa, indicating that the concentration of the membrane peroxidation products of S. fritschiana was less than those of S. trichocarpa. Compared with S. trichocarpa, S. fritschiana’s SOD activity was higher, and its ability to remove ROS was also better. Sixty-six proteins were identified with significantly different expression behavior and included regulatory, redox homeostasis, metabolism and energy, and cytoskeleton proteins. The results showed that the photosynthesis of S. trichocarpa was significantly affected by the drought stress. Enzymes in photosynthesis changed significantly; the expression of the RuBisCo large subunit decreased; and RuBisCo carboxylase, the chlorophyll a–b binding protein, ATP synthase, OEC 33 kD photosystem II protein and 23 kD OEC protein greatly increased. In addition, four antioxidant enzymes greatly increased, GroES chaperonin decreased, and eIF5A significantly increased under light stress. When S. fritschiana Schneid encountered serious drought stress, in addition to those enzymes that changed significantly under light drought stress in S. trichocarpa Nakai, NAD(P)H-quinone oxidoreductase and eIF5A were up-regulated. Specifically, three heat-shock proteins were induced. The expression of the enzymes of the two Spiraea that were related to photosynthesis, oxidation–reduction and regulation were all affected, but their species and expression patterns were different. In S. trichocarpa Nakai and S. fritschiana Schneid, there were significant changes in the proteins related to energy metabolism and the proteins related to energy transport, respectively. Thus, we considered that, in the case of protein involvement, the differences in the metabolic pathways and adjustment levels might contribute to S. trichocarpa having a weaker drought tolerance than S. fritschiana.  相似文献   

13.
Precipitation changes such as more frequent drought and altered precipitation seasonality may impose substantial impacts on the structure and functioning of forest ecosystems. A better understanding of tree responses to precipitation changes can provide fundamental information for the conservation and management of forests under future climate regimes. We conducted a 2-year seasonal rainfall redistribution experiment to assess the responses of tree transpiration and growth to manipulated precipitation changes in a subtropical evergreen broad-leaved forest. Three precipitation treatments were administered including a drier dry season and wetter wet season treatment (DD), an extended dry season and wetter wet season treatment (ED), and an ambient control treatment, with the total amount of annual rainfall being kept the same among the three treatments. Our results showed that the DD and ED treatments reduced daily transpiration of Schima superba by 8–16 and 13–25%, respectively. The ED treatment also reduced the DBH increment of larger S. superba individuals. In contrast, neither treatment showed obvious effects on the transpiration and DBH increment of another dominant species Michelia macclurei. However, the transpiration of both species showed clear inter-annual differences between the 2 years with contrasting annual rainfall (2094 vs 1582 mm). S. superba had a lower transpiration-to-precipitation ratio (T/P) compared to M. macclurei and showed decreased sensitivities to total solar radiation and vapor pressure deficit under the DD and ED treatments. These results indicate the deep-rooted S. superba may be suppressed with a lower ability to obtain water and assimilate carbon compared to the shallow-rooted M. macclurei under the precipitation seasonality changes, which could potentially cause shifts in species dominance within the forest community.  相似文献   

14.

Background

Magnesium (Mg)-deficiency is frequently observed in Citrus plantations and is responsible for the loss of productivity and poor fruit quality. Knowledge on the effects of Mg-deficiency on upstream targets is scarce. Seedlings of ‘Xuegan’ [Citrus sinensis (L.) Osbeck] were irrigated with Mg-deficient (0 mM MgSO4) or Mg-sufficient (1 mM MgSO4) nutrient solution for 16 weeks. Thereafter, we first investigated the proteomic responses of C. sinensis roots and leaves to Mg-deficiency using two-dimensional electrophoresis (2-DE) in order to (a) enrich our understanding of the molecular mechanisms of plants to deal with Mg-deficiency and (b) understand the molecular mechanisms by which Mg-deficiency lead to a decrease in photosynthesis.

Results

Fifty-nine upregulated and 31 downregulated protein spots were isolated in Mg-deficient leaves, while only 19 upregulated and 12 downregulated protein spots in Mg-deficient roots. Many Mg-deficiency-responsive proteins were involved in carbohydrate and energy metabolism, followed by protein metabolism, stress responses, nucleic acid metabolism, cell wall and cytoskeleton metabolism, lipid metabolism and cell transport. The larger changes in leaf proteome versus root one in response to Mg-deficiency was further supported by our observation that total soluble protein concentration was decreased by Mg-deficiency in leaves, but unaffected in roots. Mg-deficiency had decreased levels of proteins [i.e. ribulose-1,5-bisphosphate carboxylase (Rubisco), rubisco activase, oxygen evolving enhancer protein 1, photosynthetic electron transfer-like protein, ferredoxin-NADP reductase (FNR), aldolase] involved in photosynthesis, thus decreasing leaf photosynthesis. To cope with Mg-deficiency, C. sinensis leaves and roots might respond adaptively to Mg-deficiency through: improving leaf respiration and lowering root respiration, but increasing (decreasing) the levels of proteins related to ATP synthase in roots (leaves); enhancing the levels of proteins involved in reactive oxygen species (ROS) scavenging and other stress-responsive proteins; accelerating proteolytic cleavage of proteins by proteases, protein transport and amino acid metabolism; and upregulating the levels of proteins involved in cell wall and cytoskeleton metabolism.

Conclusions

Our results demonstrated that proteomics were more affected by long-term Mg-deficiency in leaves than in roots, and that the adaptive responses differed between roots and leaves when exposed to long-term Mg-deficiency. Mg-deficiency decreased the levels of many proteins involved in photosynthesis, thus decreasing leaf photosynthesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1462-z) contains supplementary material, which is available to authorized users.  相似文献   

15.
The lacy crust bryozoan Membranipora membranacea frequently colonizes the late harvested blades of aquacultured Saccharina japonica. From proteomic profiles of S. japonica, 145 and 91 protein spots were detected from colonized and healthy tissues, respectively. Among them, 69 and 32 spots were significantly up- and downregulated, respectively, in expression level upon colonization. In M. membranacea colonized tissue, tripartite motif protein 2-like, microcompartments protein, carboxysome peptide shell peptide, trypsin precursor-like, transmembrane protein, two-component response regulator PilR, spermine/spermidine synthase, vanadium-dependent bromoperoxidase, peptide chain release factor 1, interaptin, 50S ribosomal protein L1P, plus agglutinin and leucine-rich repeat protein were upregulated, whereas protoporphyrinogen oxidase, PIH1 domain-containing protein 2, GTPase-activating protein alpha, cytoplasmic threonyl-tRNA synthetase, flavanone 3-hydroxylase, and eukaryotic translation initiation factor 3 proteins were downregulated. Moreover, DEAD/DEAH box helicase, glutamyl-tRNA reductase, and chaperone DnaJ protein were newly expressed in the colonized tissue. Most of the up- and downregulated proteins are known to be related to stress control, defense mechanisms, signal transduction, photosynthesis, protein metabolism, and the cytoskeleton.  相似文献   

16.
The interactions between Arabidopsis thaliana and Plutella xylostella have been considered as a model system to unravel the responses of plants to herbivorous insects. Here, we use a 2-DE proteome approach to detect protein expression changes in the leaves of Arabidopsis plants exposed to P. xylostella larval infestation at 27°C within 8?h. Approximately 450 protein spots were reproducibly detected on gels. Of these, comparing healthy and infested leaves, we identified 18 differentially expressed protein spots. Thirteen proteins were successfully identified by MALDI-TOF/MS and LC-ESI-MS/MS. Functional classification analysis indicated that the differentially identified proteins were associated with amino acid, carbohydrate, energy, lipid metabolism, and photosynthesis. In addition, their relative abundances were assessed according to larval pest feeding on Arabidopsis leaves. These data provide valuable new insights for further works in plant-biotic and environmental stress interaction.  相似文献   

17.
Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future.  相似文献   

18.
Nan Liu  Qinfeng Guo 《Plant Ecology》2012,213(7):1177-1185
Shrub resource islands are characterized by resources accumulated shrubby areas surrounded by relative barren soils. This research aims to determine resource-use efficiency of native trees species planted on shrub resource islands, and to determine how the planted trees may influence the resource islands in degraded shrublands in South China. Shrub (Rhodomyrtus tomentosa) resource islands were left unplanted or were planted with 0.5-year-old indigenous tree species Schima superba, Castanopsis fissa, and Michelia macclurei. The results indicate that, after 2.5?years, the tree seedlings did not modify the physical traits (light, air temperature, and soil water) but tended to increase soil nutrients (soil organic carbon and soil nitrogen) and soil microbial biomass of the resource islands. Relative to S. superba and M. macclurei, C. fissa had greater effects on soil nutrients and microbial biomass but showed lower plant growth, survival, and resource-use efficiencies (for water, light, energy, and nitrogen). These results rejected our initial assumption that shrub resource islands would effectively promote the growth and resource utility of all the indigenous tree species and shorten the reforestation course in subtropical degraded shrubland. C. fissa performed poorly when growing on shrub resource islands, but its role in soil nutrient accumulation might have long-term impacts on the restoration of degraded shrubland. In contrast, S. superba and M. macclurei could make better use of the shrub resource islands therefore accelerating the construction of native plantations.  相似文献   

19.
20.
To gain a better understanding of cold acclimation process in wheat, we applied a 2-DE based proteomic approach to discover changes in proteome profile of a diploid wild wheat (Triticum urartu L.) during prolonged cold stress treatment. To this end, plants were grown in pots and the growing seedlings (4-leaf stage) were exposed to cold stress. After 4 weeks of cold acclimation (4–6 °C) and subsequent treatment for 12 h at ?2 °C, samples were collected from control and stressed plants and were subjected to proteome pattern analysis. Among approximately 450 reproducible protein spots displayed in each given 2-DE gels, 34 proteins changed significantly in abundance in response to cold stress. Among them, 25 and 9 proteins were up and down-regulated under stress condition, respectively. Analysis by matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry coupled with non-redundant protein database search allowed the identification of 20 cold-induced proteins. Integrated proteomic and database survey resulted in identification of several cold stress related proteins such as pathogenesis related protein, cold regulated protein, cold-responsive LEA/RAB-related COR protein, oxygen-evolving enhancer protein and oxalate oxidase. The presumed functions of the identified proteins were mostly related to cold acclimation, oxidative stress and photosynthesis. The possible implications of differentially accumulated proteins in acquiring systemic tolerance to freezing stress following exposure to prolonged low temperature will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号