首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
《Gene》1998,221(1):11-16
Both the rpb9 gene and its cDNA encoding the subunit 9 of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. From the DNA sequences, Rpb9 was predicted to consist of 113 amino acid residues with a molecular mass of 13 175. S. pombe Rpb9 is 47, 40 and 36% identical in amino acid sequence to the corresponding subunits from Saccharomyces cerevisiae, human and Drosophila melanogaster, respectively. Previously, we failed to detect Rpb9 in the purified RNA polymerase II by amino-terminal micro-sequencing of proteolytic fragments of subunits separated by SDS-gel electrophoresis. After Western blot analysis using antibodies raised against the protein product of the newly isolated rpb9 gene, we found that the purified RNA polymerase II contains Rpb9.  相似文献   

2.
RNA polymerase II from the fission yeast Schizosaccharomyces pombe consists of 12 species of subunits, Rpb1–Rpb12. We expressed these subunits, except Rpb4, simultaneously in cultured insect cells with baculovirus expression vectors. For the isolation of subunit complexes formed in the virus-infected cells, a glutathione S-transferase (GST) sequence was fused to the rpb3 cDNA to produce GSTRpb3 fusion protein and a decahistidine-tag sequence was inserted into the rpb1 cDNA to produce Rpb1H protein. After successive affinity chromatography on glutathione and Ni2+ columns, complexes consisting of the seven subunits, Rpb1H, Rpb2, GSTRpb3, Rpb5, Rpb7, Rpb8 and Rpb11, were identified. Omission of the GST–Rpb3 expression resulted in reduced assembly of the Rpb11 into the complex. Direct interaction between Rpb3 and the other six subunits was detected by pairwise coexpression experiments. Coexpression of various combinations of a few subunits revealed that Rpb11 enhances Rpb3–Rpb8 interaction and consequently Rpb8 enhances Rpb1–Rpb3 interaction to some extent. We propose a mechanism in which the assembly of RNA poly-merase II is stabilized through multiple subunit–subunit contacts.  相似文献   

3.
4.
Subunit 3 (Rpb3) of eukaryotic RNA polymerase II is a homologue of the α subunit of prokaryotic RNA polymerase, which plays a key role in subunit assembly of this complex enzyme by providing the contact surfaces for both β and β′ subunits. Previously we demonstrated that the Schizosaccharomyces pombe Rpb3 protein forms a core subassembly together with Rpb2 (the β homologue) and Rpb11 (the second α homologue) subunits, as in the case of the prokaryotic α2β complex. In order to obtain further insight into the physiological role(s) of Rpb3, we subjected the S. pombe rpb3 gene to mutagenesis. A total of nine temperature-sensitive (Ts) and three cold-sensitive (Cs) S. pombe mutants have been isolated, each (with the exception of one double mutant) carrying a single mutation in the rpb3 gene in one of the four regions (A–D) that are conserved between the homologues of eukaryotic subunit 3. The three Cs mutations were all located in region A, in agreement with the central role of the corresponding region in the assembly of prokaryotic RNA polymerase; the Ts mutations, in contrast, were found in all four regions. Growth of the Ts mutants was reduced to various extents at non-permissive temperatures. Since the metabolic stability of most Ts mutant Rpb3 proteins was markedly reduced at non-permissive temperature, we predict that these mutant Rpb3 proteins are defective in polymerase assembly or the mutant RNA polymerases containing mutant Rpb3 subunits are unstable. In accordance with this prediction, the Ts phenotype of all the mutants was suppressed to varying extents by over-expression of Rpb11, the pairing partner of Rpb3 in the core subassembly. We conclude that the majority of rpb3 mutations affect the assembly of Rpb3, even though their effects on subunit assembly vary depending on the location of the mutation considered.  相似文献   

5.
6.
[Rpb1 and Rpb2] Mapping of the contact sites␣on two large subunits of the fission yeast Schizosaccharomyces pombe RNA polymerase II with two small subunits, Rpb3 and Rpb5, was carried out using the two-hybrid screening system in the budding yeast Saccharomyces cerevisiae. Rpb5 was found to interact with any fragment of Rpb1 that contained the region H, which is conserved among the subunit 1 homologues of all RNA polymerases, including the β' subunit of prokaryotic RNA polymerases. In agreement with the fact that Rpb5 is shared among all three forms of eukaryotic RNA polymerases, the region H of RNA polymerase I subunit 1 (Rpa190) was also found to interact with Rpb5. On the other hand, two-hybrid screening of Rpb2 fragments from RNA polymerase II indicated the presence of an Rpb3 contact site in the region H which is conserved among the subunit 2 homologues of all RNA polymerases, including the β subunit of prokaryotic RNA polymerases. Possible functions of the regions H in the subunits 1 and 2 are discussed. Received: 10 December 1997 / Accepted: 14 April 1998  相似文献   

7.
Although previous biochemical studies have demonstrated global degradation of the largest subunit, Rpb1p, of RNA polymerase II in response to DNA damage, it is still not clear whether the initiating or elongating form of Rpb1p is targeted for degradation in vivo. Further, whether other components of RNA polymerase II are degraded in response to DNA damage remains unknown. Here, we show that the Rpb1p subunit of the elongating, but not initiating, form of RNA polymerase II is degraded at the active genes in response to 4-nitroquinoline-1-oxide-induced DNA damage in Saccharomyces cerevisiae. However, other subunits of RNA polymerase II are not degraded in response to DNA damage. Further, we show that Rpb1p is essential for RNA polymerase II assembly at the active gene, and thus, the degradation of Rpb1p following DNA damage disassembles elongating RNA polymerase II. Taken together, our data demonstrate that Rpb1p but not other subunits of elongating RNA polymerase II is specifically degraded in response to DNA damage, and such a degradation of Rpb1p is critical for the disassembly of elongating RNA polymerase II at the DNA lesion in vivo.  相似文献   

8.
Rpb4 is a subunit of Saccharomyces cerevisiae RNA polymerase II (Pol II). It associates with the polymerase preferentially in stationary phase and is essential for some stress responses. Using the promoter-independent initiation and chain elongation assay, we monitored Pol II enzymatic activity in cell extracts. We show here that Rpb4 is required for the polymerase activity at temperature extremes (10 and 35°C). In contrast, at moderate temperature (23°C) Pol II activity is independent of Rpb4. These results are consistent with the role previously attributed to Rpb4 as a subunit whose association with Pol II helps Pol II to transcribe during extreme temperatures. The enzymatic inactivation of Pol II lacking Rpb4 at the nonoptimal temperature was prevented by the addition of recombinant Rpb4 produced in Escherichia coli prior to the in vitro reaction assay. This finding suggests that modification of Rpb4 is not required for its functional association with the other Pol II subunits. Sucrose gradient and immunoprecipitation experiments demonstrated that Rpb4 is present in the cell in excess over the Pol II complex during all growth phases. Nevertheless, the rescue of Pol II activity at the nonoptimal temperature by Rpb4 is possible only when cell extracts are obtained from postlogarithmic cells, not from logarithmically growing cells. This result suggests that Pol II molecules should be modified in order to recruit Rpb4; the portion of the modified Pol II molecules is small during logarithmic phase and becomes predominant in stationary phase.  相似文献   

9.
10.
11.
12.
13.
In budding yeast, a highly conserved heterodimeric protein complex that is composed of the Rpb4 and Rpb7 proteins within RNA polymerase II shuttles between the nucleus and cytoplasm where it coordinates various steps of gene expression by associating with mRNAs. Although distinct stages of gene expression potentially contribute to the regulation of cellular lifespan, little is known about the underlying mechanisms. Here, we addressed the role of the dissociable Rpb4/7 heterodimeric protein complex in the regulation of replicative lifespan during various stages of gene expression in the yeast Saccharomyces cerevisiae. We observed that the loss of Rpb4 resulted in a shortened lifespan. In contrast, we found that defects in the dissociation of Rpb4/7 from the RNA polymerase core complex and in translation initiation steps affected by Rpb4/7 did not impact lifespan. Tandem affinity purification experiments demonstrated that Rpb7 physically associates with Tpk2 and Pat1, which are both implicated in mRNA degradation. Consistent with this data, the loss of the mRNA decay regulators Pat1 and Dhh1 reduced the cellular lifespan. In summary, our findings further reinforce the pivotal role of Rpb4/7 in the coordination of distinct steps of gene expression and suggest that among the many stages of gene expression, mRNA decay is a critical process that is required for normal replicative lifespan.  相似文献   

14.
15.
The RNA polymerase II (Pol II) of the fission yeast Schizosaccharomyces pombe is composed of 12 different polypeptides, Rpb1 to Rpb12, of which five, Rpb5, Rpb6, Rpb8, Rpb10 and Rpb12, are shared among three forms of the RNA polymerase. To get an insight into the control of synthesis and assembly of individual subunits, we have measured the intracellular concentrations of all 12 subunits in S. pombe by quantitative immunoblotting. Results indicate that the levels are low for the three large subunits, Rpb1, Rpb2 and Rpb3, which are the homologues of beta', beta and alpha subunits, respectively, of prokaryotic RNA polymerase. On the other hand, the levels of small-sized subunits were between 2- to 15-fold higher than these three core subunits. The levels of the five common subunits shared among RNA polymerases I, II and III are about 10 times greater than those of the Pol II-specific core subunits. The assembly state of the Rpb proteins was analyzed by glycerol gradient centrifugation of S. pombe whole cell extracts. The three core subunits are mostly assembled in Pol II, but some of the small subunits were detected in the slowly sedimenting fractions, indicating that at least some of the excess Rpb proteins exist in unassembled forms. Based on the intracellular concentration of the least abundant Rpb3 subunit, the total number of Pol II in a growing S. pombe cell was estimated to be about 10,000 molecules. The intracellular distribution of some Pol II subunits was also analyzed by microscopic observation of the green fluorescent protein (GFP)-fused Rpb proteins. In agreement with the biochemical analysis, the GFP-Rpb1 and GFP-Rpb3 fusions were present in the nuclei but the GFP-Rpb4 was detected in the cytoplasm as well as the nuclei.  相似文献   

16.
17.
18.
19.
Subunit 3 (Rpb3) of eukaryotic RNA polymerase II is a homologue of the α subunit of prokaryotic RNA polymerase, which plays a key role in subunit assembly of this complex enzyme by providing the contact surfaces for both β and β′ subunits. Previously we demonstrated that the Schizosaccharomyces pombe Rpb3 protein forms a core subassembly together with Rpb2 (the β homologue) and Rpb11 (the second α homologue) subunits, as in the case of the prokaryotic α2β complex. In order to obtain further insight into the physiological role(s) of Rpb3, we subjected the S. pombe rpb3 gene to mutagenesis. A total of nine temperature-sensitive (Ts) and three cold-sensitive (Cs) S. pombe mutants have been isolated, each (with the exception of one double mutant) carrying a single mutation in the rpb3 gene in one of the four regions (A–D) that are conserved between the homologues of eukaryotic subunit 3. The three Cs mutations were all located in region A, in agreement with the central role of the corresponding region in the assembly of prokaryotic RNA polymerase; the Ts mutations, in contrast, were found in all four regions. Growth of the Ts mutants was reduced to various extents at non-permissive temperatures. Since the metabolic stability of most Ts mutant Rpb3 proteins was markedly reduced at non-permissive temperature, we predict that these mutant Rpb3 proteins are defective in polymerase assembly or the mutant RNA polymerases containing mutant Rpb3 subunits are unstable. In accordance with this prediction, the Ts phenotype of all the mutants was suppressed to varying extents by over-expression of Rpb11, the pairing partner of Rpb3 in the core subassembly. We conclude that the majority of rpb3 mutations affect the assembly of Rpb3, even though their effects on subunit assembly vary depending on the location of the mutation considered. Received: 25 January 1999 / Accepted: 27 April 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号