首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
New verapamil analogues were synthesized and their inhibitory activities against Mycobacterium tuberculosis H37Rv determined in vitro alone and in combination with rifampicin (RIF). Some analogues showed comparable activity to verapamil and exhibited better synergies with RIF. Molecular docking studies of the binding sites of Rv1258c, a M. tuberculosis efflux protein previously implicated in intrinsic resistance to RIF, suggested a potential rationale for the superior synergistic interactions observed with some analogues.  相似文献   

3.
Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their resistance pattern. This work highlights the potential value ion channel blockers as adjuvants of tuberculosis chemotherapy, in particular for the development of new therapeutic strategies, with strong potential for treatment shortening against drug susceptible and resistant forms of tuberculosis. Medicinal chemistry studies are now needed to improve the properties of these compounds, increasing their M. tuberculosis efflux-inhibition and killing-enhancement activity and reduce their toxicity for humans, therefore optimizing their potential for clinical usage.  相似文献   

4.
The paper considers the effects of bedaquiline (BDQ), an antituberculous preparation of the new generation, on rat liver mitochondria. It was shown that 50?μM BDQ inhibited mitochondrial respiration measured with substrates of complexes I and II (glutamate/malate and succinate/rotenone systems respectively) in the states V3 and VDNP. At the same time, at concentrations below 50?μM, BDQ slightly stimulated respiration with substrates of complex I in the state V2. BDQ was also found to suppress, in a dose-dependent manner, the activity of complex II and the total activity of complexes II?+?III of the mitochondrial transport chain. It was discovered that at concentrations up to 10?μM, BDQ inhibited H2O2 production in mitochondria. BDQ (10–50?μM) suppressed the opening of Ca2+-dependent CsA-sensitive mitochondrial permeability transition pore. The latter was revealed experimentally as the inhibition of Ca2+/Pi-dependent swelling of mitochondria, suppression of cytochrome c release, and an increase in the Ca2+ capacity of the organelles. BDQ also decreased the rate of mitochondrial energy-dependent K+ transport, which was evaluated by the energy-dependent swelling of mitochondria in a K+ buffer and DNP-induced K+ efflux from the organelles. The possible mechanisms of BDQ effect of rat liver mitochondria are discussed.  相似文献   

5.
Taking into account that multidrug resistance (MDR) is the main cause for chemotherapeutic failure in cancer treatment, the ability of novel histamine H3 receptor ligands to reverse the cancer MDR was evaluated, using the ABCB1 efflux pump inhibition assay in mouse MDR T-lymphoma cells. The most active compounds displayed significant cytotoxic and antiproliferative effects as well as a very potent MDR efflux pump inhibitory action, 3–5-fold stronger than that of reference inhibitor verapamil. Although these compounds possess weak antagonistic properties against histamine H3 receptors, they are valuable pharmacological tools in the search for novel anticancer molecules. Furthermore, for the most active compounds, an insight into mechanisms of action using either, the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp, was performed.  相似文献   

6.
Treatment of Buruli ulcer, or Mycobacterium ulcerans disease, has shifted from surgical excision and skin grafting to antibiotic therapy usually with 8 weeks of daily rifampin (RIF) and streptomycin (STR). Although the results have been highly favorable, administration of STR requires intramuscular injection and carries the risk of side effects, such as hearing loss. Therefore, an all-oral, potentially less toxic, treatment regimen has been sought and encouraged by the World Health Organization. A combination of RIF plus clarithromycin (CLR) has been successful in patients first administered RIF+STR for 2 or 4 weeks. Based on evidence of efficacy of clofazimine (CFZ) in humans and mice with tuberculosis, we hypothesized that the combination of RIF+CFZ would be effective against M. ulcerans in the mouse footpad model of M. ulcerans disease because CFZ has similar MIC against M. tuberculosis and M. ulcerans. For comparison, mice were also treated with the gold standard of RIF+STR, the proposed RIF+CLR alternative regimen, or CFZ alone. Treatment was initiated after development of footpad swelling, when the bacterial burden was 4.64±0.14log10 CFU. At week 2 of treatment, the CFU counts had increased in untreated mice, remained essentially unchanged in mice treated with CFZ alone, decreased modestly with either RIF+CLR or RIF+CFZ, and decreased substantially with RIF+STR. At week 4, on the basis of footpad CFU counts, the combination regimens were ranked as follows: RIF+STR>RIF+CLR>RIF+CFZ. At weeks 6 and 8, none of the mice treated with these regimens had detectable CFU. Footpad swelling declined comparably with all of the combination regimens, as did the levels of detectable mycolactone A/B. In mice treated for only 6 weeks and followed up for 24 weeks, there were no relapses in RIF+STR treated mice, one (5%) relapse in RIF+CFZ-treated mice, but >50% in RIF+CLR treated mice. On the basis of these results, RIF+CFZ has potential as a continuation phase regimen for treatment of M. ulcerans disease.  相似文献   

7.

Background

Burkholderia cepacia complex (BCC) bacteria are highly virulent, typically multidrug-resistant, opportunistic pathogens in cystic fibrosis (CF) patients and other immunocompromised individuals. B. vietnamiensis is more often susceptible to aminoglycosides than other BCC species, and strains acquire aminoglycoside resistance during chronic CF infection and under tobramycin and azithromycin exposure in vitro, apparently from gain of antimicrobial efflux as determined through pump inhibition. The aims of the present study were to determine if oxidative stress could also induce aminoglycoside resistance and provide further observations in support of a role for antimicrobial efflux in aminoglycoside resistance in B. vietnamiensis.

Findings

Here we identified hydrogen peroxide as an additional aminoglycoside resistance inducing agent in B. vietnamiensis. After antibiotic and hydrogen peroxide exposure, isolates accumulated significantly less [3H] gentamicin than the susceptible isolate from which they were derived. Strains that acquired aminoglycoside resistance during infection and after exposure to tobramycin or azithromycin overexpressed a putative resistance-nodulation-division (RND) transporter gene, amrB. Missense mutations in the repressor of amrB, amrR, were identified in isolates that acquired resistance during infection, and not in those generated in vitro.

Conclusions

These data identify oxidative stress as an inducer of aminoglycoside resistance in B. vietnamiensis and further suggest that active efflux via a RND efflux system impairs aminoglycoside accumulation in clinical B. vietnamiensis strains that have acquired aminoglycoside resistance, and in those exposed to tobramycin and azithromycin, but not hydrogen peroxide, in vitro. Furthermore, the repressor AmrR is likely just one regulator of the putative AmrAB-OprM efflux system in B. vietnamiensis.  相似文献   

8.
Experimental data on resistance mechanisms of multiple myeloma (MM) to ixazomib (IXA), a second-generation proteasome inhibitor (PI), are currently lacking. We generated MM cell lines with a 10-fold higher resistance to IXA as their sensitive counterparts, and observed cross-resistance towards the PIs carfilzomib (CFZ) and bortezomib (BTZ). Analyses of the IXA-binding proteasome subunits PSMB5 and PSMB1 show increased PSMB5 expression and activity in all IXA-resistant MM cells, and upregulated PSMB1 expression in IXA-resistant AMO1 cells. In addition, sequence analysis of PSMB5 revealed a p.Thr21Ala mutation in IXA-resistant MM1.S cells, and a p.Ala50Val mutation in IXA-resistant L363 cells, whereas IXA-resistant AMO1 cells lack PSMB5 mutations. IXA-resistant cells retain their sensitivity to therapeutic agents that mediate cytotoxic effects via induction of proteotoxic stress. Induction of ER stress and apoptosis by the p97 inhibitor CB-5083 was strongly enhanced in combination with the PI3Kα inhibitor BYL-719 or the HDAC inhibitor panobinostat suggesting potential therapeutic strategies to circumvent IXA resistance in MM. Taken together, our newly established IXA-resistant cell lines provide first insights into resistance mechanisms and overcoming treatment strategies, and represent suitable models to further study IXA resistance in MM.  相似文献   

9.
Capsaicinoids are reported to have a bunch of promising pharmacological activities, among them antibacterial effects against various strains of bacteria. In this study the effect on efflux pumps of mycobacteria was investigated. The importance of efflux pumps, and the inhibition of these, is rising due to their involvement in antibiotic resistance development. In order to draw structure and activity relationships we tested natural and synthetical capsaicinoids as well as synthetical capsinoids. In an accumulation assay these compounds were evaluated for their ability to accumulate ethidium bromide into mycobacterial cells, a well-known substrate for efflux pumps. Capsaicin and dihydrocapsaicin, the two most abundant capsaicinoids in Capsicum species, proved to be superior efflux pump inhibitors compared to the standard verapamil. A dilution series showed dose dependency of both compounds. The compound class of less pungent capsinoids qualified for further investigation as antibacterials against Mycobacterium smegmatis.  相似文献   

10.
《Life sciences》1993,53(24):PL399-PL403
Verapamil, usually given as a racemic mixture, decreases in vivo and in vitro digoxin renal tubular secretion, which is suggested to be mediated by P-glycoprotein, an ATP-dependent multidrug efflux pump. Importantly, the two enantiomers of verapamil have been reported to similarly inhibit P-glycoprotein-mediated transport of chemotherapeutic agents. In this study, we examined effects of enantiomers of verapamil on digoxin transport across an LLC-PK1 cell monolayer, a model of proximal renal tubular cells. The results indicate that verapamil inhibition of digoxin transport is non-stereospecific. Furthermore, the verapamil-digoxin interaction is not competitive. The two drugs may not share a common initial step in the P-glycoprotein-mediated transport.  相似文献   

11.
Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.  相似文献   

12.
Bacterial resistance to antibiotics has become a worldwide problem. One potential alternative for bacterial control is photodynamic therapy. 5-aminolevulinic acid is a natural precursor of the photosensitizer protoporphyrin IX. Relatively little is known about the antibacterial efficacy of photodynamic therapy using the systemic administration of 5-aminolevulinic acid; a few reports have shown that 5-aminolevulinic acid exerts photodynamic effects on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In this study, we evaluated the effectiveness of photodynamic therapy using 5-aminolevulinic acid and a 410-nm wavelength light-emitting diode in vitro and in vivo for the treatment of MRSA. We found that 5-aminolevulinic acid photodynamic therapy with the light-emitting diode had an in-vitro bactericidal effect on MRSA. In vivo, protoporphyrin IX successfully accumulated in MRSA on ulcer surfaces after intraperitoneal administration of 5-aminolevulinic acid to mice. Furthermore, 5-aminolevulinic acid photodynamic therapy accelerated wound healing and decreased bacterial counts on ulcer surfaces; in contrast, vancomycin treatment did not accelerate wound healing. Our findings indicate that 5-aminolevulinic acid photodynamic therapy may be a new treatment option for MRSA-infected wounds.  相似文献   

13.
ObjectivesThe present study was undertaken to investigate the mutations that are present in mexR gene of multidrug resistant (MDR) isolates of Pseudomonas aeruginosa collected from a tertiary referral hospital of north east India.Methods76 MDR clinical isolates of P. aeruginosa were obtained from the patients who were admitted to or attended the clinics of Silchar medical college and hospital. They were screened phenotypically for the presence of efflux pump activity by an inhibitor based method. Acquired resistance mechanisms were detected by multiplex PCR. Real time PCR was performed to study the expression of mexA gene of MexAB-OprM efflux pump in isolates with increase efflux pump activity. mexR gene of the isolates with overexpressed MexAB-OprM efflux pump was amplified, sequenced and analysed.ResultsOut of 76 MDR isolates, 24 were found to exhibit efflux pump activity phenotypically against ciprofloxacin and meropenem. Acquired resistance mechanisms were absent in 11 of them and among those isolates, 8 of them overexpressed MexAB-OprM. All the 8 isolates possessed mutation in mexR gene. 11 transversions, 4 transitions, 2 deletion mutations and 2 insertion mutations were found in all the isolates. However, the most significant observation was the formation of a termination codon at 35th position which resulted in the termination of the polypeptide and leads to overexpression of the MexAB-OprM efflux pump.ConclusionsThis study highlighted emergence of a novel mutation which is probably associated with multi drug resistance. Therefore, further investigations and actions are needed to prevent or at least hold back the expansion and emergence of newer mutations in nosocomial pathogens which may compromise future treatment options.  相似文献   

14.
Isoniazid (INH) and rifampicin (RIF) are the two most effective drugs in tuberculosis therapy. Understanding the molecular mechanisms of resistance to these two drugs is essential to quickly diagnose multidrug-resistant (MDR) tuberculosis and extensive drug-resistant tuberculosis. Nine clinical Mycobacterium tuberculosis isolates resistant to only INH and RIF and 10 clinical pan-sensitive isolates were included to evaluate the expression of 20 putative drug efflux pump genes and sequence mutations in rpoB (RIF), katG (INH), the inhA promoter (INH), and oxyR-ahpC (INH). Nine and three MDR isolates were induced to overexpress efflux pump genes by INH and RIF, respectively. Eight and two efflux pump genes were induced to overexpress by INH and RIF in MDR isolates, respectively. drrA, drrB, efpA, jefA (Rv2459), mmr, Rv0849, Rv1634, and Rv1250 were overexpressed under INH or RIF stress. Most efflux pump genes were overexpressed under INH stress in a MDR isolates that carried the wild-type katG, inhA, and oxyR-ahpC associated with INH resistance than in those that carried mutations. The expression levels of 11 genes (efpA, Rv0849, Rv1250, P55 (Rv1410c), Rv1634, Rv2994, stp, Rv2459, pstB, drrA, and drrB) without drug inducement were significantly higher (P < 0.05) in nine MDR isolates than in 10 pan-sensitive isolates. In conclusion, efflux pumps may play an important role in INH acquired resistance in MDR M. tuberculosis, especially in those strains having no mutations in genes associated with INH resistance; basal expression levels of some efflux pump genes are higher in MDR isolates than in pan-sensitive isolates and the basal expressional differences may be helpful to diagnose and treat resistant tuberculosis.  相似文献   

15.

Background

We evaluated the in vitro activity of a merochlorin A, a novel compound with a unique carbon skeleton, against a spectrum of clinically relevant bacterial pathogens and against previously characterized clinical and laboratory Staphylococcus aureus isolates with resistance to numerous antibiotics.

Methods

Merochlorin A was isolated and purified from a marine-derived actinomycete strain CNH189. Susceptibility testing for merochlorin A was performed against previously characterized human pathogens using broth microdilution and agar dilution methods. Cytotoxicity was assayed in tissue culture assays at 24 and 72 hours against human HeLa and mouse sarcoma L929 cell lines.

Results

The structure of as new antibiotic, merochlorin A, was assigned by comprehensive spectroscopic analysis. Merochlorin A demonstrated in vitro activity against Gram-positive bacteria, including Clostridium dificile, but not against Gram negative bacteria. In S. aureus, susceptibility was not affected by ribosomal mutations conferring linezolid resistance, mutations in dlt or mprF conferring resistance to daptomycin, accessory gene regulator knockout mutations, or the development of the vancomycin-intermediate resistant phenotype. Merochlorin A demonstrated rapid bactericidal activity against MRSA. Activity was lost in the presence of 20% serum.

Conclusions

The unique meroterpenoid, merochlorin A demonstrated excellent in vitro activity against S. aureus and C. dificile and did not show cross-resistance to contemporary antibiotics against Gram positive organisms. The activity was, however, markedly reduced in 20% human serum. Future directions for this compound may include evaluation for topical use, coating biomedical devices, or the pursuit of chemically modified derivatives of this compound that retain activity in the presence of serum.  相似文献   

16.
Due to the limited information of the contribution of various antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates, Antibiotic resistance mechanisms, including integron analysis, identification of quinolone resistance-determining region mutations, measurement of efflux pump activity, and sequence analysis of efflux pump regulators, were investigated in 66 clinical B. cepacia complex isolates. Species were identified via recA-RFLP and MALDI-TOF. Four genomovars were identified by recA-RFLP. B. cenocepacia (genomovar III) was the most prevalent genomovar (90.1%). Most isolates (60/66, 90.9%) were correctly identified by MALDI-TOF analysis. Clonal relatedness determined by PFGE analysis revealed 30 pulsotypes, including two major pulsotypes that comprised 22.7% and 18.2% of the isolates, respectively. Seventeen (25.8%) isolates harboured class 1 integron with various combinations of resistance genes. Among six levofloxacin-resistant isolates, five had single-base substitutions in the gyrA gene and three demonstrated efflux pump activities. Among the 42 isolates exhibiting resistance to at least one antimicrobial agent, 94.4% ceftazidime-resistant isolates (17/18) and 72.7% chloramphenicol-resistant isolates (16/22) demonstrated efflux pump activity. Quantitation of efflux pump RNA level and sequence analysis revealed that over-expression of the RND-3 efflux pump was attributable to specific mutations in the RND-3 efflux pump regulator gene. In conclusion, high-level expression of efflux pumps is prevalent in B. cepacia complex isolates. Mutations in the RND-3 efflux pump regulator gene are the major cause of efflux pump activity, resulting in the resistance to antibiotics in clinical B. cepacia complex isolates.  相似文献   

17.

Background

Penicillin resistance in Streptococcus pneumoniae is mediated by a mosaic of genes encoding altered penicillin-binding proteins (PBPs). Nonetheless, S. pneumoniae has also developed non-PBP mechanisms implicated in penicillin resistance. In this study, whole genome sequencing of resistant organisms was used to discover mutations implicated in resistance to penicillin.

Results

We sequenced two S. pneumoniae isolates selected for resistance to penicillin in vitro. The analysis of the genome assemblies revealed that six genes were mutated in both mutants. These included three pbp genes, and three non-pbp genes, including a putative iron permease, spr1178. The nonsense mutation in spr1178 always occurred in the first step of the selection process. Although the mutants had increased resistance to penicillin, the introduction of altered versions of PBPs into a penicillin-susceptible strain by sequential transformation led to strains with a minimal increase in resistance, thus implicating other genes in resistance. The introduction by transformation of the non-PBP recurrent mutations did not increase penicillin resistance, but the introduction of the nonsense mutation in the putative iron permease spr1178 led to a reduced accumulation of reactive oxygen species following exposure to penicillin and to other bactericidal antibiotics as well.

Conclusions

This study indicates that the selection of resistance to penicillin in S. pneumoniae involves the acquisition of mutations conferring tolerance to the antibiotic-induced accumulation of oxidants, which translates into an increased survival that putatively enables the selection of major resistance determinants such as mutations in PBPs.  相似文献   

18.

Background

The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed ‘multidrug resistance’ (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of Gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (ß-lactams, quinolones, …).

Methodology/Principal Findings

Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAßN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAßN-susceptible efflux system was also identified in resistant E. aerogenes strains.

Conclusions/Significance

For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum ß-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase in inhibitor-susceptible efflux throws light on a new step in the evolution of mechanism in E. aerogenes.  相似文献   

19.
The mechanism of chloroquine (CQ) resistance in Plasmodium falciparum is not clearly understood. However, CQ resistance has been shown to be associated with point mutations in Pfcrt and Pfmdr1. These genes encode for digestive vacuole transmembrane proteins Pfcrt and Pgh1, respectively. The present study was carried out to analyze the association of Pfcrt-K76T and Pfmdr1-N86Y mutations with CQ resistance in Northeast Indian P. falciparum isolates. 115 P. falciparum isolates were subjected to in vitro CQ sensitivity testing and PCR-RFLP analysis for the Pfmdr1-N86Y and Pfcrt-K76T mutations. 100 isolates of P. falciparum were found to be resistant to CQ by the in vitro susceptibility test (geometric mean EC50 2.21 µM/L blood) while 15 were found to be CQ sensitive (geometric mean EC50 0.32 µM/L blood). All the CQ resistant isolates showed the presence of Pfmdr1 and Pfcrt mutations. CQ sensitive isolates were negative for these mutations. Strong linkage disequilibrium was observed between the alleles at these two loci (Pfmdr1-N86Y and Pfcrt-K76T). The results indicate that Pfmdr1-N86Y and Pfcrt-K76T mutations can be used as molecular markers to identify CQ resistance in P. falciparum. The result necessitates the evaluation of CQ in vivo therapeutic efficacy in endemic areas for more effective malaria control strategies.  相似文献   

20.
Multidrug resistant leprosy, defined as resistance to rifampin, dapsone and fluoroquinolones (FQ), has been described in Mycobacterium leprae. However, the in vivo impact of fluoroquinolone resistance, mainly mediated by mutations in DNA gyrase (GyrA2GyrB2), has not been precisely assessed. Our objective was to measure the impact of a DNA gyrase mutation whose implication in fluoroquinolone resistance has been previously demonstrated through biochemical studies, on the in vivo activity of 3 fluoroquinolones: ofloxacin, moxifloxacin and garenoxacin.

Methodology/Principal Findings

We used the proportional bactericidal method. 210 four-week-old immunodeficient female Nude mice (NMRI-Foxn1nu/Foxn1nu) were inoculated in the left hind footpad with 0.03 ml of bacterial suspension containing 5×103, 5×102, 5×101, and 5×100 M. leprae AFB organisms of strain Hoshizuka-4 which is a multidrug resistant strain harboring a GyrA A91V substitution. An additional subgroup of 10 mice was inoculated with 5×10−1 bacilli in the untreated control group. The day after inoculation, subgroups of mice were treated with a single dose of ofloxacin, moxifloxacin, garenoxacin or clarithromycin at 150 mg/kg dosing. 12 months later mice were sacrificed and M. leprae bacilli were numbered in the footpad. The results from the untreated control group indicated that the infective inoculum contained 23% of viable M. leprae. The results from the moxifloxacin and garenoxacin groups indicated that a single dose of these drugs reduced the percentage of viable M. leprae by 90%, similarly to the reduction observed after a single dose of the positive control drug clarithromycin. Conversely, ofloxacin was less active than clarithromycin.

Conclusion/Significance

DNA gyrase mutation is not always synonymous of lack of in vivo fluoroquinolone activity in M. leprae. As for M. tuberculosis, in vivo studies allow to measure residual antibiotic activity in case of target mutations in M. leprae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号