首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignancy and it presents a therapeutic challenge in organ transplant recipient patients. Despite the need, there are only a few targeted drug treatment options. Recent studies have revealed a pivotal role played by microRNAs (miRNAs) in multiple cancers, but only a few studies tested their function in cSCC. Here, we analyzed differential expression of 88 cancer related miRNAs in 43 study participants with cSCC; 32 immunocompetent, 11 OTR patients, and 15 non-lesional skin samples by microarray analysis. Of the examined miRNAs, miR-135b was the most upregulated (13.3-fold, 21.5-fold; p=0.0001) in both patient groups. Similarly, the miR-135b expression was also upregulated in three cSCC cell lines when evaluated by quantitative real-time PCR. In functional studies, inhibition of miR-135b by specific anti-miR oligonucleotides resulted in upregulation of its target gene LZTS1 mRNA and protein levels and led to decreased cell motility and invasion of both primary and metastatic cSCC cell lines. In contrast, miR-135b overexpression by synthetic miR-135b mimic induced further down-regulation of LZTS1 mRNA in vitro and increased cancer cell motility and invasiveness. Immunohistochemical evaluation of 67 cSCC tumor tissues demonstrated that miR-135b expression inversely correlated with LZTS1 staining intensity and the tumor grade. These results indicate that miR-135b functions as an oncogene in cSCC and provide new understanding into its pathological role in cSCC progression and invasiveness.  相似文献   

4.
5.
FBXO32 (MAFbx/Atrogin-1) is an E3 ubiquitin ligase that is markedly up-regulated in muscle atrophy. Although some data indicate that FBXO32 may play an important role in tumorigenesis, the molecular mechanism of FBXO32 in tumorigenesis has been poorly understood. Here, we present evidence that FBXO32 targets the oncogenic protein c-Myc for ubiquitination and degradation through the proteasome pathway. Phosphorylation of c-Myc at Thr-58 and Ser-62 is dispensable for FBXO32 to induce c-Myc degradation. Mutation of the lysine 326 in c-Myc reduces c-Myc ubiquitination and prevents the c-Myc degradation induced by FBXO32. Furthermore, overexpression of FBXO32 suppresses c-Myc activity and inhibits cell growth, but knockdown of FBXO32 enhances c-Myc activity and promotes cell growth. Finally, we show that FBXO32 is a direct downstream target of c-Myc, highlighting a negative feedback regulation loop between c-Myc and FBXO32. Thus, FBXO32 may function by targeting c-Myc. This work explains the function of FBXO32 and highlights its mechanisms in tumorigenesis.  相似文献   

6.
7.
There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.  相似文献   

8.
Melanoma is the most aggressive type of skin cancer with a rapid progression and a limited efficiency of therapeutics. Recently, studies have identified some microRNAs playing important roles in the development of melanoma. Syndecan-1 (Syn-1), dysregulated in many cancers, plays important roles in tumor progression by controlling cell proliferation. In this study, we investigated whether microRNA-143 (miR-143) is involved in the regulation of Syn-1 and thus plays a functional role in melanoma. We found that miR-143 expression was significantly lower in melanoma tissues than in normal tissues and its low expression was closely related to clinical stages of melanoma. Further experiments showed that consistent with the inhibitory effects induced by knockdown of Syn-1, overexpression of miR-143 suppressed cell proliferation, promoted G1 phase arrest and induced apoptosis in melanoma. Downregulation of miR-143 apparently produced opposite effects. Combined treatment of miR-143 overexpression and Syn-1 knockdown induced remarkable synergistic effects, while reconstitution of miR-143-resistant Syn-1 reversed the inhibitory activity of miR-143. Moreover, miR-143 level was inversely correlated with Syn-1 expression in melanoma cells. miR-143 directly targeted the 3′-untranslated regions of Syn-1 mRNA and they were in the same Argonaute2 complex. Taken together, this study revealed a link between miRNA-143 and Syn-1 in the pathogenesis of melanoma. MiR-143 plays an important role in the regulation of cell growth in melanoma. Restoration of miR-143 expression may represent a promising and efficient therapeutic approach for targeting malignant melanoma.  相似文献   

9.
Diabetes is the most common and complex metabolic disorder, and one of the most important health threats now. MicroRNAs (miRNAs) are a group of small non-coding RNAs that have been suggested to play a vital role in a variety of physiological processes, including glucose homeostasis. In this study, we investigated the role of miR-185 in diabetes. MiR-185 was significantly downregulated in diabetic patients and mice, and the low level was correlated to blood glucose concentration. Overexpression of miR-185 enhanced insulin secretion of pancreatic β-cells, promoted cell proliferation and protected cells from apoptosis. Further experiments using in silico prediction, luciferase reporter assay and western blot assay demonstrated that miR-185 directly targeted SOCS3 by binding to its 3’-UTR. On the contrary to miR-185’s protective effects, SOCS3 significantly suppressed functions of β-cell and inactivated Stat3 pathway. When treating cells with miR-185 mimics in combination with SOCS3 overexpression plasmid, the inhibitory effects of SOCS3 were reversed. While combined treatment of miR-185 mimics and SOCS3 siRNA induced synergistically promotive effects compared to either miR-185 mimics or SOCS3 siRNA treatment alone. Moreover, we observed that miR-185 level was inversely correlated with SOCS3 expression in diabetes patients. In conclusion, this study revealed a functional and mechanistic link between miR-185 and SOCS3 in the pathogenesis of diabetes. MiR-185 plays an important role in the regulation of insulin secretion and β-cell growth in diabetes. Restoration of miR-185 expression may serve a potentially promising and efficient therapeutic approach for diabetes.  相似文献   

10.
MicroRNA (miR)-125b expression is modulated in macrophages in response to stimulatory cues. In this study, we report a functional role of miR-125b in macrophages. We found that miR-125b is enriched in macrophages compared with lymphoid cells and whole immune tissues. Enforced expression of miR-125b drives macrophages to adapt an activated morphology that is accompanied by increased costimulatory factor expression and elevated responsiveness to IFN-γ, whereas anti-miR-125b treatment decreases CD80 surface expression. To determine whether these alterations in cell signaling, gene expression, and morphology have functional consequences, we examined the ability of macrophages with enhanced miR-125b expression to present Ags and found that they better stimulate T cell activation than control macrophages. Further indicating increased function, these macrophages were more effective at killing EL4 tumor cells in vitro and in vivo. Moreover, miR-125b repressed IFN regulatory factor 4 (IRF4), and IRF4 knockdown in macrophages mimicked the miR-125b overexpression phenotype. In summary, our evidence suggests that miR-125b is at least partly responsible for generating the activated nature of macrophages, at least partially by reducing IRF4 levels, and potentiates the functional role of macrophages in inducing immune responses.  相似文献   

11.
12.
13.
14.
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal solid tumor due to the lack of reliable early detection markers and effective therapies. MicroRNAs (miRNAs), noncoding RNAs that regulate gene expression, are involved in tumorigenesis and have a remarkable potential for the diagnosis and treatment of malignancy. In this study, we investigated aberrantly expressed miRNAs involved in PDAC by comparing miRNA expression profiles in PDAC cell lines with a normal pancreas cell line and found that miR-135a was significantly down-regulated in the PDAC cell lines. The microarray results were validated by qRT-PCR in PDAC tissues, paired adjacent normal pancreatic tissues, PDAC cell lines, and a normal pancreas cell line. We then defined the tumor-suppressing significance and function of miR-135a by constructing a lentiviral vector to express miR-135a. The overexpression of miR-135a in PDAC cells decreased cell proliferation and clonogenicity and also induced G1 arrest and apoptosis. We predicted Bmi1 may be a target of miR-135a using bioinformatics tools and found that Bmi1 expression was markedly up-regulated in PDAC. Its expression was inversely correlated with miR-135a expression in PDAC. Furthermore, a luciferase activity assay revealed that miR-135a could directly target the 3''-untranslated region (3''-UTR) of Bmi1. Taken together, these results demonstrate that miR-135a targets Bmi1 in PDAC and functions as a tumor suppressor. miR-135a may offer a new perspective for the development of effective miRNA-based therapy for PDAC.  相似文献   

15.
16.
Tao  Yunhai  Gao  Kerun  Shen  Bianhong  Zhang  Kaiyuan  Zhang  Zhiwen  Wang  Chengpeng 《Biochemical genetics》2021,59(6):1582-1598

Depression is a serious and potentially life-threatening mental illness. Recently, the role of sirtuin 1 (SIRT1) in chronic unpredictable mild stress (CUMS) management has been examined. The present study explored and clarified whether microRNA (miR)-135b-5p could play a role in depression by regulating the expression of SIRT1. SIRT1 was identified as the target gene of miR-135b-5p using TargetScan and the dual luciferase reporter assay. In addition, the expression levels of SIRT1 were significantly reduced in mouse peripheral blood and hippocampal tissue samples, while the expression of miR-135b-5p exhibited the opposite effects. Subsequently, the effects of miR-135b-5p inhibition were investigated in mice with depression. The results indicated that the miR-135b-5p inhibitor significantly increased the weight loss induced by CUMS compared with the model group, while reducing the expression levels of miR-135b-5p and further alleviating the depression-like behavior induced by CUMS. Concomitantly, the results indicated that the miR-135b-5p inhibitor inhibited CUMS-induced hippocampal cell apoptosis and significantly reduced the expression levels of cleaved caspase-3 and the ratio of cleaved caspase-3/caspase-3. Moreover, the miR-135b-5p inhibitor significantly reduced the CUMS-induced increase of the inflammatory factors IL-1β, IL-6 and TNF-α in the hippocampal mouse samples, while significantly increasing the expression levels of SIRT1. Finally, the results demonstrated that all the effects of the miR-135b-5p inhibitor on CUMS-induced mice were significantly reversed by SIRT1 silencing. In conclusion, the present study indicated that the miR-135b-5p/SIRT1 pathway was a key mediator of antidepressant effects induced in depressed mice. Therefore, it could be considered a potential therapeutic target for the treatment of CUMS-induced depression.

  相似文献   

17.
18.
He HC  Zhu JG  Chen XB  Chen SM  Han ZD  Dai QS  Ling XH  Fu X  Lin ZY  Deng YH  Qin GQ  Cai C  Chen JH  Zhong WD 《FEBS letters》2012,586(16):2451-2458
To investigate the mechanism by which peroxiredoxin III (PRDX3) is altered in human prostate cancer (PCa), we used microRNA (miRNA) target prediction program and miRNA microarray to predict and identify miR-23b as a candidate miRNA that targets PRDX3. We showed that miR-23b suppresses PRDX3 protein expression in human DU145 cells under normal and hypoxic conditions. Additionally, the clinical significance of miR-23b and PRDX3 expression in PCa patients was also confirmed. In conclusion, our data suggest that the effects of PRDX3 in PCa progression may be caused by the regulation function of miR-23b, and consequently, miR-23b may be involved in the response of PCa cells to hypoxia stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号