首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An intriguing aspect of social foraging behaviour is that large groups are often no better at capturing prey than are small groups, a pattern that has been attributed to diminished cooperation (i.e., free riding) in large groups. Although this suggests the formation of large groups is unrelated to prey capture, little is known about cooperation in large groups that hunt hard-to-catch prey. Here, we used direct observations of Yellowstone wolves (Canis lupus) hunting their most formidable prey, bison (Bison bison), to test the hypothesis that large groups are more cooperative when hunting difficult prey. We quantified the relationship between capture success and wolf group size, and compared it to previously reported results for Yellowstone wolves hunting elk (Cervus elaphus), a prey that was, on average, 3 times easier to capture than bison. Whereas improvement in elk capture success levelled off at 2–6 wolves, bison capture success levelled off at 9–13 wolves with evidence that it continued to increase beyond 13 wolves. These results are consistent with the hypothesis that hunters in large groups are more cooperative when hunting more formidable prey. Improved ability to capture formidable prey could therefore promote the formation and maintenance of large predator groups, particularly among predators that specialize on such prey.  相似文献   

2.
Hunting Behavior of Chimpanzees at Ngogo,Kibale National Park,Uganda   总被引:7,自引:0,他引:7  
Chimpanzees (Pan troglodytes) prey on a variety of vertebrates, mostly on red colobus (Procolobus spp.) where the two species are sympatric. Variation across population occurs in hunting frequency and success, in whether hunting is cooperative, i.e., payoffs to individual hunters increase with group size, and in the extent to which hunters coordinate their actions in space and time, and in the impact of hunting on red colobus populations. Also, hunting frequency varies over time within populations, for reasons that are unclear. We present new data on hunting by chimpanzees at Ngogo, Kibale National Park, Uganda, and combine them with earlier data (Mitani and Watts, 1999, Am. J. Phys. Anthropol. 109: 439–454) to examine hunting frequency and success, seasonality, and cooperation. The Ngogo community is the largest and has the most males of any known community. Chimpanzees there mostly hunt red colobus and are much more successful and make many more kills per hunt than at other sites; they kill 6–12% of the red colobus population annually. The number of kills and the offtake of meat per hunt increase with the number of hunters, but per capita meat intake is independent of hunting party size; this suggests that cheating occurs in large parties. Some behavioral cooperation occurs. Hunting success and estimated meat intake vary greatly among males, partly due to dominance rank effects. The high overall success rate leads to relatively high average per capita meat intake despite the large number of consumers. The frequency of hunts and of hunting patrols varies positively with the availability of ripe fruit; this is the first quantitative demonstration of a relationship between hunting frequency and the availability of other food, and implies that the chimpanzees hunt most when they can easily meet energy needs from other sources. We provide the first quantitative support for the argument that variation in canopy structure influences decisions to hunt red colobus because hunts are easier where the canopy is broken.  相似文献   

3.
Cooperative hunting has been documented for several group-living carnivores and had been invoked as either the cause or the consequence of sociality. We report the first detailed observation of cooperative hunting for a solitary species, the Malagasy fossa (Cryptoprocta ferox). We observed a 45 min hunt of a 3 kg arboreal primate by three male fossas. The hunters changed roles during the hunt and subsequently shared the prey. We hypothesize that social hunting in fossas could have either evolved to take down recently extinct larger lemur prey, or that it could be a by-product of male sociality that is beneficial for other reasons.  相似文献   

4.
Hunters that have options to hunt in different areas should evaluate their previous hunting success when they decide where to hunt. Following optimal foraging theory for non-human predators, we investigated if hunting success and density of other hunters on the hunting area will affect the probability of return to the same area, and if such behavioural changes will result in a higher hunting success compared to hunters that change to a new area. For this purpose, we used detailed information about willow grouse (Lagopus lagopus) hunters on state-owned land in Sweden. We found support for the optimal foraging theory application on grouse hunters’ behavioural changes according to hunting success. The return rate increased with increasing hunting success, and hunters that returned to the same area also increased their success compared to hunters that changed to a new area. Only one third of the hunters returned to the same area the subsequent year. We also found a negative effect of density of hunters in an area on hunters’ return rates and their hunting success, suggesting crowding among Swedish grouse hunters.  相似文献   

5.
We investigated hunting in an unusually large community of wild chimpanzees at Ngogo in the Kibale National Park, Uganda. Aspects of predation were recorded with respect to the prey, the predators, and hunting episodes. During 23 months of observation, the Ngogo chimpanzees caught 128 prey items from four primate and three ungulate species. Chimpanzees preyed selectively on immature red colobus primarily during group hunts, with adult males making the majority of kills. Party size and composition were significant predictors of the probability that chimpanzees would hunt and of their success during attempts. Chimpanzees were more likely to hunt red colobus if party size and the number of male hunters were large; party size and the number of male hunters were also significantly larger in successful compared with unsuccessful hunts. The Ngogo chimpanzees did not appear to hunt cooperatively, but reciprocal meat-sharing typically took place after kills. Hunts occurred throughout the year, though there was some seasonality as displayed by periodic hunting binges. The extremely high success rate and large number of kills made per successful hunt are the two most striking aspects of predation by the Ngogo chimpanzees. We compare currently available observations of chimpanzee hunting behavior across study sites and conclude that the large size of the Ngogo community contributes to their extraordinary hunting success. Demographic differences between groups are likely to contribute to other patterns of interpopulation variation in chimpanzee predation. Am J Phys Anthropol 109:439–454, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

6.
Invasive species cause catastrophic alterations to communities worldwide by changing the trophic balance within ecosystems. Ever since their introduction in the mid 1980''s common red lionfish, Pterois volitans, are having dramatic impacts on the Caribbean ecosystem by displacing native species and disrupting food webs. Introduced lionfish capture prey at extraordinary rates, altering the composition of benthic communities. Here we demonstrate that the extraordinary success of the introduced lionfish lies in its capacity to circumvent prey risk assessment abilities as it is virtually undetectable by prey species in its native range. While experienced prey damselfish, Chromis viridis, respond with typical antipredator behaviours when exposed to a common predatory rock cod (Cephalopholis microprion) they fail to visibly react to either the scent or visual presentation of the red lionfish, and responded only to the scent (not the visual cue) of a lionfish of a different genus, Dendrochirus zebra. Experienced prey also had much higher survival when exposed to the two non-invasive predators compared to P. volitans. The cryptic nature of the red lionfish has enabled it to be destructive as a predator and a highly successful invasive species.  相似文献   

7.
Hunting group size, hunting rates and hunting success were monitored over a seven-year period among members of one large clan of spotted hyenas ( Crocuta crocuta ) inhabiting the Masai Mara National Reserve, in south-west Kenya. Prey availability varied seasonally in this study area, and hyenas tended to hunt whichever prey species were most abundant during each month of the year. Over 75% of 272 hunting attempts were made by lone hyenas, even when they hunted antelope three times their own body mass, such as wildebeest and topi. Of all prey that were commonly hunted, only zebra were usually hunted in groups. Approximately one-third of all hunting attempts resulted in prey capture. Although no significant sex differences were observed in juvenile or adult hunting rates, low-ranking adult females hunted at significantly higher hourly rates than did higher-ranking females. Hunting success was not influenced by the social rank of hunters, but hunting group size and hunter's age strongly influenced success. Young hyenas were poor hunters, and did not achieve adult competency levels until they were 5–6 years old.  相似文献   

8.
All known chimpanzee populations have been observed to hunt small mammals for meat. Detailed observations have shown, however, that hunting strategies differ considerably between populations, with some merely collecting prey that happens to pass by while others hunt in coordinated groups to chase fast-moving prey. Of all known populations, Taï chimpanzees exhibit the highest level of cooperation when hunting. Some of the group hunting roles require elaborate coordination with other hunters as well as precise anticipation of the movements of the prey. The meat-sharing rules observed in this community guarantee the largest share of the meat to hunters who perform the most important roles leading to a capture. The learning time of such hunting roles is sometimes especially long. Taï chimpanzee males begin hunting monkeys at about age 10. The hunters’ progress in learning the more sophisticated hunting roles is clearly correlated with age; only after 20 years of practice are they able to perform them reliably. This lengthy learning period has also been shown in some hunter-gatherer societies and confirms the special challenge that hunting represents.  相似文献   

9.
Intraspecific group hunting has received considerable attention because of the close links between cooperative behaviour and its cognitive demands. Accordingly, comparisons between species have focused on behaviours that can potentially distinguish between the different levels of cognitive complexity involved, such as “intentional” communication between partners in order to initiate a joint hunt, the adoption of different roles during a joint hunt (whether consistently or alternately), and the level of food sharing following a successful hunt. Here we report field observations from the Red Sea on the highly coordinated and communicative interspecific hunting between the grouper, Plectropomus pessuliferus, and the giant moray eel, Gymnothorax javanicus. We provide evidence of the following: (1) associations are nonrandom, (2) groupers signal to moray eels in order to initiate joint searching and recruit moray eels to prey hiding places, (3) signalling is dependent on grouper hunger level, and (4) both partners benefit from the association. The benefits of joint hunting appear to be due to complementary hunting skills, reflecting the evolved strategies of each species, rather than individual role specialisation during joint hunts. In addition, the partner species that catches a prey item swallows it whole immediately, making aggressive monopolisation of a carcass impossible. We propose that the potential for monopolisation of carcasses by one partner species represents the main constraint on the evolution of interspecific cooperative hunting for most potentially suitable predator combinations.  相似文献   

10.
Even when hunting in groups is mutually beneficial, it is unclear how communal hunts are initiated. If it is costly to be the only hunter, individuals should be reluctant to hunt unless others already are. We used 70 years of data from three communities to examine how male chimpanzees ‘solve’ this apparent collective action problem. The ‘impact hunter’ hypothesis proposes that group hunts are sometimes catalysed by certain individuals that hunt more readily than others. In two communities (Kasekela and Kanyawara), we identified a total of five males that exhibited high hunt participation rates for their age, and whose presence at an encounter with red colobus monkeys increased group hunting probability. Critically, these impact hunters were observed to hunt first more often than expected by chance. We argue that by hunting first, these males dilute prey defences and create opportunities for previously reluctant participants. This by-product mutualism can explain variation in group hunting rates within and between social groups. Hunting rates declined after the death of impact hunter FG in Kasekela and after impact hunter MS stopped hunting frequently in Kanyawara. There were no impact hunters in the third, smaller community (Mitumba), where, unlike the others, hunting probability increased with the number of females present at an encounter with prey.  相似文献   

11.
Intraspecific group hunting has received considerable attention by researchers interested in cooperative behaviour and animal cognition. Differences between species in the complexity of the hunting with respect to communication, coordination and food sharing have typically been interpreted as a reflection of differences in cognitive abilities. Here we describe for the first time collaborative hunting where individuals play different roles in a fish species, the yellow saddle goatfish Parupeneus cyclostomus. Adults in our study area may live either solitarily or in relatively stable groups formed of similar sized and most likely unrelated individuals. The solitary life style was associated with searching for hidden immobile prey on sandy areas while group living was associated with collaborative hunting of mobile prey in corals. Any member of a group could initiate a hunt by rapid acceleration. Partners did not simply follow the attacker but deviated around coral formation to block the prey’s escape routes. Prey that escaped into a coral crevice was typically encircled with maximal inter‐individual distance and pried on by insertion of the barbels into the crevices. As home ranges largely overlapped and no between‐group aggression existed, we propose that it is the hunting of mobile prey in a complexly structured habitat that selects for collaborative hunting and hence for the evolution of group living in yellow saddle goatfish.  相似文献   

12.
Prey respond to predation risk with a range of behavioral tactics that can vary based on space use and hunting mode of the predator. Unlike other predators, human hunters are often more spatially and temporally restricted, which creates a period of short-duration, high-intensity predation risk for prey. Consequently, identifying the roles different hunting modes (i.e., archery and rifle), hunts for targeted and non-targeted species, and landscape features play in altering spatial and temporal responses of prey to predation risk by humans is important for effective management of harvested populations. From 2009 to 2016, we used a large-scale experiment including 50 animal-years of location data from 38 unique male elk (Cervus canadensis) to quantify changes in movement and resource selection in response to hunters during 3 separate 5-day controlled hunts for antlered males (elk archery, deer [Odocoileus spp.] rifle, and elk rifle) at the Starkey Experimental Forest and Range in northeast Oregon, USA. We evaluated competing hypotheses regarding elk responses to varying levels of prey risk posed by the different hunt types. We predicted that the strength of elk behavioral responses would increase with perceived hunter lethality (i.e., weak response to elk archery but similar response to elk and deer rifle hunts) and that prey response would be closely associated with hunter activity within the diel cycle (greater during diurnal than nocturnal hours) and across hunting seasons. Elk responses were strongest during diurnal hours when hunters were active on the landscape and were generally more pronounced during both rifle hunts than during the archery hunt (supporting our perceived lethality hypothesis). Male elk avoided open roads across all periods except during nocturnal hours of the breeding season and alternated between avoidance of areas with high canopy cover during nocturnal hours and selection during diurnal hours. In combination these patterns led to distinct distributional changes of male elk from pre-hunt to hunt periods. Patterns of male elk selection highlight the importance of managing for heterogeneous landscapes to meet a variety of habitat, harvest, hunter satisfaction, and escapement objectives.  相似文献   

13.
In a foraging game, predators must catch elusive prey while avoiding injury. Predators manage their hunting success with behavioral tools such as habitat selection, time allocation, and perhaps daring—the willingness to risk injury to increase hunting success. A predator’s level of daring should be state dependent: the hungrier it is, the more it should be willing to risk injury to better capture prey. We ask, in a foraging game, will a hungry predator be more willing to risk injury while hunting? We performed an experiment in an outdoor vivarium in which barn owls (Tyto alba) were allowed to hunt Allenby’s gerbils (Gerbillus andersoni allenbyi) from a choice of safe and risky patches. Owls were either well fed or hungry, representing the high and low state, respectively. We quantified the owls’ patch use behavior. We predicted that hungry owls would be more daring and allocate more time to the risky patches. Owls preferred to hunt in the safe patches. This indicates that owls manage risk of injury by avoiding the risky patches. Hungry owls doubled their attacks on gerbils, but directed the added effort mostly toward the safe patch and the safer, open areas in the risky patch. Thus, owls dared by performing a risky action—the attack maneuver—more times, but only in the safest places—the open areas. We conclude that daring can be used to manage risk of injury and owls implement it strategically, in ways we did not foresee, to minimize risk of injury while maximizing hunting success.  相似文献   

14.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   

15.
Group-hunting is ubiquitous across animal taxa and has received considerable attention in the context of its functions. By contrast much less is known about the mechanisms by which grouping predators hunt their prey. This is primarily due to a lack of experimental manipulation alongside logistical difficulties quantifying the behaviour of multiple predators at high spatiotemporal resolution as they search, select, and capture wild prey. However, the use of new remote-sensing technologies and a broadening of the focal taxa beyond apex predators provides researchers with a great opportunity to discern accurately how multiple predators hunt together and not just whether doing so provides hunters with a per capita benefit. We incorporate many ideas from collective behaviour and locomotion throughout this review to make testable predictions for future researchers and pay particular attention to the role that computer simulation can play in a feedback loop with empirical data collection. Our review of the literature showed that the breadth of predator:prey size ratios among the taxa that can be considered to hunt as a group is very large (<100 to >102). We therefore synthesised the literature with respect to these predator:prey ratios and found that they promoted different hunting mechanisms. Additionally, these different hunting mechanisms are also related to particular stages of the hunt (search, selection, capture) and thus we structure our review in accordance with these two factors (stage of the hunt and predator:prey size ratio). We identify several novel group-hunting mechanisms which are largely untested, particularly under field conditions, and we also highlight a range of potential study organisms that are amenable to experimental testing of these mechanisms in connection with tracking technology. We believe that a combination of new hypotheses, study systems and methodological approaches should help push the field of group-hunting in new directions.  相似文献   

16.
Abstract

A postal survey of 8639 licensed firearm owners in 1989 indicated that an estimated 117 200 ± 6300 New Zealanders (3.5% of the total population) did some hunting in 1988. An estimated 33 100 former hunters did not hunt in 1988 but thought it likely that they would hunt again in future. The survey provided useful estimates of 1988 national totals for hunting effort (4.4 million hunter days), gross expenditure ($NZ100 million), and harvest (6.5 million animals).

Small-game hunting dominated, involving 81% of hunters, 59% of total hunting effort, and 86% of total numerical harvest: rabbits (Oryctolagus cuniculus) and possums (Trichosurus vulpecula) each comprised 40% of the national bag. Gamebird hunting involved 48% of hunters, 19% of effort, and 11% of total harvest: ducks comprised 73% of the gamebird harvest. Although big-game hunting attracted the fewest hunters (42%) it ranked second for hunting effort (21%). Big game formed 3% of the total numerical harvest: pigs (Sus scrofa), goats (Capra hircus), and red deer (Cervus elaphus scoticus) were the most commonly taken. Big-game were estimated to comprise 49% of total harvest biomass, followed by small-game (47%), and gamebirds (4%). Most deer (nearly 60%) were taken for recreation, with helicopter-based hunting accounting for only one-third the total deer harvest.

A quarter of those people hunting in 1988 hunted on five or fewer days that year, and a relatively small group of mainly professional hunters accounted for a disproportionately large share of the overall harvest Hunters reported spending an average of $851 each on hunting in 1988. Expenditure on big-game comprised 44% of the total, small-game 23%, and gamebirds 33%. Expenditure per animal harvested or per day hunted was greater for big-game animals (other than goats) than for gamebirds, which were more expensive to hunt than small-game. Total hunting effort was inversely related to the average expenditure per animal harvested, regardless of the type of game.  相似文献   

17.
Aplomado falcons (Falco femoralis) often hunt in pairs when chasing birds; 29% of 349 hunts observed in eastern Mexico involved mated pairs of falcons simultaneously chasing the same prey animal; and 66% of 100 hunts of birds were tandem pursuits. Although true cooperative hunting is uncommon in birds of prey, hunts by pairs of Aplomado falcons consistently showed signs of cooperative behavior such as use of a simple coordinative signal, and some division of labor between participating individuals. Pairs were more than twice as successful as solo falcons hunting birds (44% vs. 19%), however, there was no evidence that cooperative hunting increased the range of feasible prey sizes. The frequent use of cooperative foraging in this and similar species may relate to necessities of efficient nest defense, and food and nest procurement in savannas inhabited by a diversity of nest-site predators.  相似文献   

18.
For predators, cooperation can decrease the cost of hunting and potentially augment the benefits. It can also make prey accessible that a single predator could not catch. The degree of cooperation varies substantially and may range from common attraction to a productive food source to true cooperation involving communication and complementary action by the individuals involved. We here describe cooperative hunting of Galapagos sea lions (Zalophus wollebaeki) for Amberstripe scad (Decapterus muroadsi), a schooling, fast swimming semipelagic fish. A group of 6–10 sea lions, usually females only, drove scad over at least 600–800 m from open water into a cove where, in successful hunts, they drove them ashore. Frequently, these “core hunters” were joined toward the final stages of the hunt by another set of opportunistic sea lions from a local colony at that beach. The “core hunters” did not belong to that colony and apparently were together coming toward the area specifically for the scad hunt. Based on the observation of 40 such hunts from 2016 to 2020, it became evident that the females performed complementary actions in driving the scad toward the cove. No specialization of roles in the hunt was observed. All “core hunters” and also opportunistically joining sea lions from the cove shared the scad by randomly picking up a few of the 25–300 (mean 100) stranded fish as did scrounging brown pelicans. In one of these hunts, four individual sea lions were observed to consume 7–8 fish each in 25 s. We conclude that the core hunters must communicate about a goal that is not present to achieve joint hunting but presently cannot say how they do so. This is a surprising achievement for a species that usually hunts singly and in which joint hunting plays no known role in the evolution of its sociality.  相似文献   

19.
Group foraging provides predators with advantages in over-powering prey larger than themselves or in aggregating small prey for efficient exploitation. For group-living predatory species, cooperative hunting strategies provide inclusive fitness benefits. However, for colonial-breeding predators, the benefit pay-offs of group foraging are less clear due to the potential for intra-specific competition. We used animal-borne cameras to determine the prey types, hunting strategies, and success of little penguins (Eudyptula minor), a small, colonial breeding air-breathing marine predator that has recently been shown to display extensive at-sea foraging associations with conspecifics. Regardless of prey type, little penguins had a higher probability of associating with conspecifics when hunting prey that were aggregated than when prey were solitary. In addition, success was greater when individuals hunted schooling rather than solitary prey. Surprisingly, however, success on schooling prey was similar or greater when individuals hunted on their own than when with conspecifics. These findings suggest individuals may be trading-off the energetic gains of solitary hunting for an increased probability of detecting prey within a spatially and temporally variable prey field by associating with conspecifics.  相似文献   

20.
In this paper, we attempt to understand hunter–gatherer foraging decisions about prey that vary in both the mean and variance of energy return using an expected utility framework. We show that for skewed distributions of energetic returns, the standard linear variance discounting (LVD) model for risk-sensitive foraging can produce quite misleading results. In addition to creating difficulties for the LVD model, the skewed distributions characteristic of hunting returns create challenges for estimating probability distribution functions required for expected utility. We present a solution using a two-component finite mixture model for foraging returns. We then use detailed foraging returns data based on focal follows of individual hunters in Western Australia hunting for high-risk/high-gain (hill kangaroo) and relatively low-risk/low-gain (sand monitor) prey. Using probability densities for the two resources estimated from the mixture models, combined with theoretically sensible utility curves characterized by diminishing marginal utility for the highest returns, we find that the expected utility of the sand monitors greatly exceeds that of kangaroos despite the fact that the mean energy return for kangaroos is nearly twice as large as that for sand monitors. We conclude that the decision to hunt hill kangaroos does not arise simply as part of an energetic utility-maximization strategy and that additional social, political or symbolic benefits must accrue to hunters of this highly variable prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号