首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have previously identified 17 biomarker genes which were upregulated by whole virion influenza vaccines, and reported that gene expression profiles of these biomarker genes had a good correlation with conventional animal safety tests checking body weight and leukocyte counts. In this study, we have shown that conventional animal tests showed varied and no dose-dependent results in serially diluted bulk materials of influenza HA vaccines. In contrast, dose dependency was clearly shown in the expression profiles of biomarker genes, demonstrating higher sensitivity of gene expression analysis than the current animal safety tests of influenza vaccines. The introduction of branched DNA based-concurrent expression analysis could simplify the complexity of multiple gene expression approach, and could shorten the test period from 7 days to 3 days. Furthermore, upregulation of 10 genes, Zbp1, Mx2, Irf7, Lgals9, Ifi47, Tapbp, Timp1, Trafd1, Psmb9, and Tap2, was seen upon virosomal-adjuvanted vaccine treatment, indicating that these biomarkers could be useful for the safety control of virosomal-adjuvanted vaccines. In summary, profiling biomarker gene expression could be a useful, rapid, and highly sensitive method of animal safety testing compared with conventional methods, and could be used to evaluate the safety of various types of influenza vaccines, including adjuvanted vaccine.  相似文献   

2.

Background

Serum antibody responses in humans to inactivated influenza A (H5N1), (H9N2) and A (H7) vaccines have been varied but frequently low, particularly for subunit vaccines without adjuvant despite hemagglutinin (HA) concentrations expected to induce good responses.

Design

To help understand the low responses to subunit vaccines, we evaluated influenza A (H5N1), (H9N2), (H7N7) vaccines and 2009 pandemic (H1N1) vaccines for antigen uptake, processing and presentation by dendritic cells to T cells, conformation of vaccine HA in antibody binding assays and gel analyses, HA titers with different red blood cells, and vaccine morphology in electron micrographs (EM).

Results

Antigen uptake, processing and presentation of H5, H7, H9 and H1 vaccine preparations evaluated in humans appeared normal. No differences were detected in antibody interactions with vaccine and matched virus; although H7 trimer was not detected in western blots, no abnormalities in the conformation of the HA antigens were identified. The lowest HA titers for the vaccines were <1∶4 for the H7 vaccine and 1∶661 for an H9 vaccine; these vaccines induced the fewest antibody responses. A (H1N1) vaccines were the most immunogenic in humans; intact virus and virus pieces were prominent in EM. A good immunogenic A (H9N2) vaccine contained primarily particles of viral membrane with external HA and NA. A (H5N1) vaccines intermediate in immunogenicity were mostly indistinct structural units with stellates; the least immunogenic A (H7N7) vaccine contained mostly small 5 to 20 nm structures.

Summary

Antigen uptake, processing and presentation to human T cells and conformation of the HA appeared normal for each inactivated influenza A vaccine. Low HA titer was associated with low immunogenicity and presence of particles or split virus pieces was associated with higher immunogenicity.  相似文献   

3.
DNA from porcine circovirus type 1 (PCV1) and 2 (PCV2) has recently been detected in two vaccines against rotaviral gastroenteritis from manufacturers A and B. We investigated if PCV1 sequences are present in other viral vaccines. We screened seeds, bulks and final vaccine preparations from ten manufacturers using qRT-PCR. We detected 3.8 × 103 to 1.9 × 107 PCV1 DNA copies/milliliter in live poliovirus seeds for inactivated polio vaccine (IPV) from manufacturer A, however, following inactivation and purification, the finished IPV was PCV1-negative. PCV1 DNA was not detectable in live polio preparations from other vaccine producers. There was no detectable PCV1 DNA in the measles, mumps, rubella and influenza vaccines analysed including material supplied by manufacturer A. We confirmed that the PCV1 genome in the rotavirus vaccine from manufacturer A is near full-length. It contains two mutations in the PCV cap gene, which may result from viral adaptation to Vero cells. Bulks of this vaccine contained 9.8 × 1010 to 1.8 × 1011 PCV1 DNA copies/millilitre and between 4.1 × 107 and 5.5 × 108 DNA copies were in the final doses. We found traces of PCV1 and PCV2 DNA in the rotavirus vaccine from manufacturer B. This highlights the issue of vaccine contamination and may impact on vaccine quality control.  相似文献   

4.

Background

The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.

Methodology/Principal Findings

BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.

Conclusion/Significance

Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.  相似文献   

5.
Development of successful vaccines against human infectious diseases depends on using appropriate animal models for testing vaccine efficacy and safety. For some viral infections the task is further complicated by the frequently changing genetic make-up of the virus, as in the case of influenza, or by the existence of the little-understood phenomenon of vaccine-enhanced disease, as in the case of respiratory syncytial virus (RSV). The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of the RSV vaccine-enhanced disease. Recently, using cotton rats, we have demonstrated that vaccination against another paramyxovirus, human metapneumovirus (hMPV), can also lead to vaccine-enhanced disease. In addition to the study of paramyxoviruses, S. hispidus presents important advantages for the study of orthomyxoviruses such as influenza. The cotton rat is susceptible to infection with unadapted human influenza strains, and heterosubtypic immunity to influenza can be evoked in S. hispidus. The mechanisms of influenza, RSV, and hMPV pathogenesis and immunity can now be investigated in the cotton rat with the development of species-specific reagents for this animal model.  相似文献   

6.
Avian influenza (AI) is a respiratory disease complex syndrome recently recorded in vaccinated flocks causing high economic losses. This study aimed to prepare inactivated vaccine from recently isolated field strains [highly pathogenic avian influenza (HPAI) (H5N8) and low pathogenic avian influenza (LPAI) (H9N2)] and compare the efficiency of the two experimental avian influenza vaccines and some commercial avian influenza H5 and H9N2 vaccines in laying hens. The obtained results indicated that the identified experimental vaccines (H5N8 and H9N2) were protected the flocks from AI as compared to commercial H5N1, H5N3, and H9N2 vaccines, which showed a protection level of 80, 70, and 90%, respectively, indicating a high efficacy for the developed vaccines. In addition, it significantly improved the virus shedding, especially when used in booster dose. The experimental vaccines were given high antibody titer higher than commercial vaccine which was reached to 9.3 log2, 9.7log2 for experimental H5N8 vaccine which was significantly higher than and groups 3 and 4 especially at 2nd WPV, while at the 3rd WPV, the significant difference was with group 4 only. The HI titer was 9.3 log2 at 2nd WPV for the experimental H9N2 vaccine that was significantly higher than group 9. In conclusion, the booster dose of the experimental vaccines could elicit strong immunity than single-dose and commercial vaccines.  相似文献   

7.
BackgroundInfluenza is a cause of febrile acute respiratory infection (FARI) in India; however, few influenza vaccine trials have been conducted in India. We assessed absolute and relative efficacy of live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) among children aged 2 to 10 years in rural India through a randomized, triple-blind, placebo-controlled trial conducted over 2 years.Methods and findingsIn June 2015, children were randomly allocated to LAIV, IIV, intranasal placebo, or inactivated polio vaccine (IPV) in a 2:2:1:1 ratio. In June 2016, vaccination was repeated per original allocation. Overall, 3,041 children received LAIV (n = 1,015), IIV (n = 1,010), nasal placebo (n = 507), or IPV (n = 509). Mean age of children was 6.5 years with 20% aged 9 to 10 years.Through weekly home visits, nasal and throat swabs were collected from children with FARI and tested for influenza virus by polymerase chain reaction. The primary outcome was laboratory-confirmed influenza-associated FARI; vaccine efficacy (VE) was calculated using modified intention-to-treat (mITT) analysis by Cox proportional hazards model (PH) for each year.In Year 1, VE was 40.0% (95% confidence interval (CI) 25.2 to 51.9) for LAIV and 59.0% (95% CI 47.8 to 67.9) for IIV compared with controls; relative efficacy of LAIV compared with IIV was −46.2% (95% CI −88.9 to −13.1). In Year 2, VE was 51.9% (95% CI 42.0 to 60.1) for LAIV and 49.9% (95% CI 39.2 to 58.7) for IIV; relative efficacy of LAIV compared with IIV was 4.2% (95% CI −19.9 to 23.5). No serious adverse vaccine-attributable events were reported. Study limitations include differing dosage requirements for children between nasal and injectable vaccines (single dose of LAIV versus 2 doses of IIV) in Year 1 and the fact that immunogenicity studies were not conducted.ConclusionsIn this study, we found that LAIV and IIV vaccines were safe and moderately efficacious against influenza virus infection among Indian children.Trial registrationClinical Trials Registry of India CTRI/2015/06/005902.

Anand Krishnan and co-workers study the efficacy and safety of influenza vaccines for children in India.  相似文献   

8.

Background

The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs) have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n.) route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l.) route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored.

Methods and Results

A recombinant M2 protein with three tandem copies of the M2e (3M2eC) was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs.

Conclusions

The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.  相似文献   

9.
Live attenuated influenza vaccine (LAIV) candidates of the H7 subtype, A/Netherlands/219/03 (H7N7, NL03 ca) and A/chicken/British Columbia/CN-6/2004 (H7N3, BC04 ca), were evaluated for their receptor binding specificity and immunogenicity in ferrets. The BC04 ca virus exhibited α2,3-SA and α2,6-SA dual receptor binding preference while the NL03 ca virus preferentially bound to α2,3-SA. Substitution of the Q226 and G228 (Q-G) by the L226 and S228 (L-S) residues in the HA improved binding to α2,6-SA for NL03 ca. The vaccine viruses with L-S retained the attenuation phenotype. NL03 L-S ca replicated more efficiently than the original NL03 ca virus in the upper respiratory tract of ferrets, and induced higher levels of humoral and cellular immune responses. Prior vaccination with seasonal LAIV reduced H7-specific antibody responses, but did not reduce the H7N7 vaccine mediated protection against a heterologous H7N3 BC04 wt virus infection in ferrets. In addition, the H7N3 and H7N7 vaccine immunized ferret sera cross reacted with the newly emerged H7N9 virus. These data, in combination with the safety data from previously conducted Phase 1 studies, suggest that these vaccines may have a role in responding to the threat posed by the H7N9 virus.  相似文献   

10.
Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein''s neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.  相似文献   

11.
Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.  相似文献   

12.
The nature of influenza virus to randomly mutate and evolve into new types with diverse antigenic determinants is an important challenge in the control of influenza infection. Particularly, variations within the amino acid sequences of major neutralizing epitopes of influenza virus hemagglutinin (HA) hindered the development of universal vaccines against H5N1 lineages. Based on distribution analyses of the identified major neutralizing epitopes of hemagglutinin, we selected three vaccine strains that cover the entire variants in the neutralizing epitopes among the H5N1 lineages. HA proteins of selected vaccine strains were expressed on the baculovirus surface (BacHA), and the preclinical efficacy of the vaccine formulations was evaluated in a mouse model. The combination of three selected vaccine strains could effectively neutralize viruses from clades 1, 2.1, 2.2, 4, 7, and 8 of influenza H5N1 viruses. In contrast, a vaccine formulation containing only adjuvanted monovalent BacHA (mono-BacHA) or a single strain of inactivated whole viral vaccine was able to neutralize only clade 1 (homologous), clade 2.1, and clade 8.0 viruses. Also, the trivalent BacHA vaccine was able to protect 100% of the mice against challenge with three different clades (clade 1.0, clade 2.1, and clade 7.0) of H5N1 strains compared to mono-BacHA or inactivated whole viral vaccine. The present findings provide a rationale for the development of a universal vaccine against H5N1 lineages. Furthermore, baculoviruses displaying HA will serve as an ideal choice for a vaccine in prepandemic or pandemic situations and expedite vaccine technology without the requirement of high-level-biocontainment facilities or tedious protein purification processes.The nature of influenza virus to randomly mutate and evolve into new types with diverse antigenic determinants is an important challenge in the control of influenza infection (20). This has been evidently recognized by the recent outbreaks of H5N1 avian influenza virus infection and the current pandemic situation with H1N1 swine-origin influenza A virus (S-OIV). In fact, it has been well documented in the literature that H5N1 had acquired the ability to infect human tissues due mainly to the occurrence of mutation events (1). Highly pathogenic avian influenza (HPAI) H5N1 viruses are antigenically distinguishable owing to differences in hemagglutinin (HA) sequences, the principal determinant of immunity to influenza virus, resulting in different lineages or clades of H5N1 (13, 33). The control of infection with current H5N1 vaccines does not appear to be effective against heterologous strains or phylogenetically variant clades of H5N1 in part due to variations in the HA sequences, particularly within the neutralizing epitope region. Since present vaccines are based solely on the induction of neutralizing antibodies against these epitopes, differences in these sequences may render current vaccines unqualified for the prevention of influenza globally (15, 28, 31). To overcome such limitations and to completely realize the potential of vaccines worldwide, the concept of universal vaccines based on conserved viral proteins has recently been proposed. The highly conserved ion channel protein (M2) and the nucleoprotein (NP) of influenza virus have been evaluated for the induction of cross-protective cellular immunity and viral clearance (2, 35). Antibodies generated against these conserved proteins may reduce viral spread and accelerate recovery from influenza (14). However, antibodies specific to these proteins are poorly immunogenic and were found previously to be infection permissive (5-7, 13). Thus, the development of a vaccine based on influenza virus hemagglutinin appears to be the only viable option to prevent infections by HPAI viruses such as H5N1 viruses. Nevertheless, amino acid variations within the major antigenic neutralizing epitope regions among H5 subtypes restrict the development of such universal vaccines against different H5N1 lineages.The development of a universal vaccine based entirely on HA of influenza virus is still feasible, if the variation or conservation of neutralizing epitopes among the several HPAI H5N1 virus clades can be identified. An understanding of the distribution pattern of such neutralizing epitopes could help in the design of future vaccines by incorporating two or more ideal H5N1 strains in the vaccine composition. The neutralizing epitopes of the selected viral strains should cover the variations among most H5 subtypes in order to acquire broad-range protective immunity against most H5N1 subtypes. Previous attempts to identify amino acid substitutions within HA sequences of variants that escaped from neutralization by monoclonal antibodies (MAbs) revealed the neutralizing epitope sites of HA (9, 10). Along with previous findings, we report here the identification of other major neutralizing epitopes of H5N1 by mapping their amino acid sequences using neutralizing monoclonal antibodies (n-MAbs). Analysis of the distribution of all identified neutralizing epitopes among H5 subtypes revealed variations within the antigenic determinants of H5N1 subtypes from both human and avian sources. Based on these results, we have selected three vaccine strains comprising the major neutralizing epitopes of HA to cover the entire variants within H5N1 lineages. In order to test our hypothesis in vivo, HA proteins of selected vaccine strains were expressed on the baculovirus surface (BacHA), and the efficacy of the vaccine formulations was evaluated with a mouse model challenged with phylogenetically variant H5N1 strains.  相似文献   

13.
Human influenza is a seasonal disease associated with significant morbidity and mortality. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination with a three inactivated influenza virus strains mixture, or by intranasal administration of a group of three different live attenuated influenza vaccine strains. Comparing to the inactivated vaccine, the attenuated live viruses allow better elicitation of a long-lasting and broader immune (humoral and cellular) response that represents a naturally occurring transient infection. The cold-adapted (ca) influenza A/AA/6/60 (H2N2) (AA ca) virus is the backbone for the live attenuated trivalent seasonal influenza vaccine licensed in the United States. Similarly, the influenza A components of live-attenuated vaccines used in Russia have been prepared as reassortants of the cold-adapted (ca) H2N2 viruses, A/Leningrad/134/17/57-ca (Len/17) and A/Leningrad/134/47/57-ca (Len/47) along with virulent epidemic strains. However, the mechanism of temperature-sensitive attenuation is largely elusive. To understand how modification at genetic level of influenza virus would result in attenuation of human influenza virus A/PR/8/34 (H1N1,A/PR8), we investigated the involvement of key mutations in the PB1 and/or PB2 genes in attenuation of influenza virus in vitro and in vivo. We have demonstrated that a few of residues in PB1 and PB2 are critical for the phenotypes of live attenuated, temperature sensitive influenza viruses by minigenome assay and real-time PCR. The information of these mutation loci could be used for elucidation of mechanism of temperature-sensitive attenuation and as a new strategy for influenza vaccine development.  相似文献   

14.
15.
根据中国药典2005年版三部和WHO"人用大流行流感疫苗制备的指导原则"相关要求,以及各企业的申报规程,对全国10家甲型H1N1流感疫苗生产企业工作毒种A/Californ ia/07/2009 NYMC X-179A进行毒种检定,结果均符合中国药典2005年版三部和各企业申报规程的要求。  相似文献   

16.
BackgroundAluminium salts are the most common adjuvants in infant vaccines. The aluminium content of a vaccine is provided by the manufacturer and is indicated on the patient information leaflet. There is no independent verification, for example by the European Medicines Agency, of the aluminium content of infant vaccines.MethodsWe have measured the aluminium content of thirteen infant vaccines using microwave-assisted acid and peroxide digestion followed by transversely heated graphite furnace atomic absorption spectrometry. Our data are compared with manufacturer’s data using full statistical analyses including Bayesian methods.ResultsWe found that only three vaccines contained the amount of aluminium indicated by the manufacturer. Six vaccines contained a statistically significant (P < 0.05) greater quantity while four vaccines contained a statistically significant (P < 0.05) lower quantity. The range of content for any single vaccine varied considerably, for example, from 0.172 to 0.602 mg/vaccine for Havrix.ConclusionsThe data have raised specific questions about the significance of the aluminium content of vaccines and identified areas of extremely limited information. Since aluminium is a known toxin in humans and specifically a neurotoxin, its content in vaccines should be accurate and independently monitored to ensure both efficacy and safety.  相似文献   

17.
Highly pathogenic influenza viruses continue to cause serious threat to public health due to their pandemic potential, calling for an urgent need to develop effective, safe, convenient, and universal vaccines against influenza virus infection. In this study, we constructed two recombinant protein vaccines, 2H5M2e-2H7M2e-H5FP-H7FP (hereinafter M2e-FP-1) and 2H5M2e-H5FP-2H7M2e-H7FP (hereinafter M2e-FP-2), by respectively linking highly conserved sequences of two molecules of ectodomain of M2 (M2e) and one molecule of fusion peptide (FP) epitope of hemagglutinin (HA) of H5N1 and H7N9 influenza viruses in different orders. The Escherichia coli-expressed M2e-FP-1 and M2e-FP-2 proteins induced similarly high-titer M2e-FP-specific antibodies in the immunized mice. Importantly, both proteins were able to prevent lethal challenge of heterologous H1N1 influenza virus, with significantly reduced viral titers and alleviated pathological changes in the lungs, as well as increased body weight and complete survivals, in the challenge mice. Taken together, our study demonstrates that highly conserved M2e and FP epitope of HA of H5N1 and H7N9 influenza viruses can be used as important targets for development of safe and economical universal influenza vaccines, and that the position of H7N9 M2e and H5N1 HA epitope sequences in the vaccine components has no significant effects on the immunogenicity and efficacy of M2e-FP-based subunit vaccines.  相似文献   

18.
The efficacy, safety, speed, scalability and cost‐effectiveness of producing hemagglutinin‐based virus‐like particle (VLP) vaccines in plants are well‐established for human influenza, but untested for the massive poultry influenza vaccine market that remains dominated by traditional egg‐grown oil‐emulsion whole inactivated virus vaccines. For optimal efficacy, a vaccine should be closely antigenically matched to the field strain, requiring that influenza A vaccines be updated regularly. In this study, an H6 subtype VLP transiently expressed in Nicotiana benthamiana was formulated into a vaccine and evaluated for efficacy in chickens against challenge with a heterologous H6N2 virus. A single dose of the plant‐produced H6 VLP vaccine elicited an immune response comparable to two doses of a commercial inactivated H6N2 vaccine, with mean hemagglutination inhibition titres of 9.3 log2 and 8.8 log2, respectively. Compared to the non‐vaccinated control, the H6 VLP vaccine significantly reduced the proportion of shedders and the magnitude of viral shedding by >100‐fold in the oropharynx and >6‐fold in the cloaca, and shortened oropharyngeal viral shedding by at least a week. Despite its potency, the cost of the antigenic mismatch between the inactivated H6N2 vaccine and challenge strain was evident not only in this vaccine's failure to reduce viral shedding compared to the non‐vaccinated group, but its apparent exacerbation of oropharyngeal viral shedding until 21 days post‐challenge. We estimate that a kilogram of plant leaf material can produce H6 VLP vaccines sufficient for between 5000 and 30 000 chickens, depending on the effective dose and whether one or two immunizations are administered.  相似文献   

19.

Background

We developed a novel intranasal influenza vaccine approach that is based on the construction of replication-deficient vaccine viruses that lack the entire NS1 gene (ΔNS1 virus). We previously showed that these viruses undergo abortive replication in the respiratory tract of animals. The local release of type I interferons and other cytokines and chemokines in the upper respiratory tract may have a “self-adjuvant effect”, in turn increasing vaccine immunogenicity. As a result, ΔNS1 viruses elicit strong B- and T- cell mediated immune responses.

Methodology/Principal Findings

We applied this technology to the development of a pandemic H5N1 vaccine candidate. The vaccine virus was constructed by reverse genetics in Vero cells, as a 5∶3 reassortant, encoding four proteins HA, NA, M1, and M2 of the A/Vietnam/1203/04 virus while the remaining genes were derived from IVR-116. The HA cleavage site was modified in a trypsin dependent manner, serving as the second attenuation factor in addition to the deleted NS1 gene. The vaccine candidate was able to grow in the Vero cells that were cultivated in a serum free medium to titers exceeding 8 log10 TCID50/ml. The vaccine virus was replication deficient in interferon competent cells and did not lead to viral shedding in the vaccinated animals. The studies performed in three animal models confirmed the safety and immunogenicity of the vaccine. Intranasal immunization protected ferrets and mice from being infected with influenza H5 viruses of different clades. In a primate model (Macaca mulatta), one dose of vaccine delivered intranasally was sufficient for the induction of antibodies against homologous A/Vietnam/1203/04 and heterologous A/Indonesia/5/05 H5N1 strains.

Conclusion/Significance

Our findings show that intranasal immunization with the replication deficient H5N1 ΔNS1 vaccine candidate is sufficient to induce a protective immune response against H5N1 viruses. This approach might be attractive as an alternative to conventional influenza vaccines. Clinical evaluation of ΔNS1 pandemic and seasonal influenza vaccine candidates are currently in progress.  相似文献   

20.

Background

Vaccination is the preferred preventive strategy against influenza. Though health behaviors are known to affect immunity and vaccine delivery modes utilize different immune processes, data regarding the preferred influenza vaccine type among adults endorsing specific health-related behaviors (alcohol use, tobacco use, and exercise level) are limited.

Methods

The relative effectiveness of two currently available influenza vaccines were compared for prevention of influenza-like illness during 2 well-matched influenza seasons (2006/2007, 2008/2009) among US military personnel aged 18–49 years. Relative vaccine effectiveness was compared between those self-reporting and not reporting recent smoking history and potential alcohol problem, and by exercise level using Cox proportional hazard modeling adjusted for sociodemographic and military factors, geographic area, and other health behaviors.

Results

28,929 vaccination events and 3936 influenza-like illness events over both influenza seasons were studied. Of subjects, 27.5% were smokers, 7.7% had a potential alcohol-related problem, 10.5% reported minimal exercise, and 4.4% reported high exercise levels. Overall, the risk of influenza-like illness did not significantly differ between live attenuated and trivalent inactivated influenza vaccine recipients (hazard ratio, 0.98; 95% confidence interval, 0.90–1.06). In the final adjusted model, the relative effectiveness of the 2 vaccine types did not differ by smoking status (p = 0.10), alcohol status (p = 0.21), or activity level (p = 0.11).

Conclusions

Live attenuated and trivalent inactivated influenza vaccines were similarly effective in preventing influenza-like illness among young adults and did not differ by health-related behavior status. Influenza vaccine efforts should continue to focus simply on delivering vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号