首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preventing the establishment of a non-native species is critical for ensuring the species does not become invasive, yet most non-native species will have little impact on their environment. Despite this, little is known about what influences whether a species will remain relatively benign, or whether it will cause economic or ecological harm. Understanding a plant’s microhabitat provides insight into the necessary conditions for establishment and the current distribution limitations of a population. We investigated microhabitat preference of the non-native natal grass (Melinis repens (Willd.) Zizka) in Florida scrub using microhabitat sampling to measure vegetation composition. We examined the extent to which microhabitats were associated with natal grass presence and biomass in invaded disturbed scrub and roadside plots using backwards stepwise logistic regression and general linear models to identify significant microhabitat variables. We further compared these plots with those in undisturbed, uninvaded scrub to characterize vegetation across habitat types, and used our model to predict the probability of natal grass invasion in undisturbed scrub. Natal grass preferred microhabitats with high litter volume and distance to shrubs and intermediate cactus, graminoid, and vine cover. Roadside natal grass achieved higher biomass and was less microhabitat limited than disturbed scrub natal grass. We determined that undisturbed scrub plots represent distinct microhabitats that natal grass is unlikely to invade. Microhabitat sampling provides land-managers a non-intrusive technique to assess potential habitat suitability based non-native plant preferences before a costly invasion occurs.  相似文献   

2.
Watch lists of invasive species that threaten a particular land management unit are useful tools because they can draw attention to invasive species at the very early stages of invasion when early detection and rapid response efforts are often most successful. However, watch lists typically rely on the subjective selection of invasive species by experts or on the use of spotty occurrence records. Further, incomplete records of invasive plant occurrences bias these watch lists towards the inclusion of invasive plant species that may already be present in a land management unit, because the occurrences have not been formally integrated into publicly accessible biodiversity databases. However, these problems may be overcome by an iterative approach that guides more complete detection and compilation of invasive plant species records within land management units. To address issues from unobserved or unrecorded occurrences, we combined predicted suitable habitat from species distribution models and aggregated invasive plant occurrence records to develop ranked watch lists of 146 priority invasive plant species on >4000 land management units from five different administrative types within the United States. Based on this analysis, we determined that on average 84% of priority invasive plants with suitable habitat within a given land management unit were as yet unobserved, and that 41% of those were ‘doorstep species’ – found within 50 miles of the unit boundary yet not detected within the unit. Two case studies, developed in collaboration with staff at U.S. Fish and Wildlife Service Refuges, showed that by combining both habitat suitability models and invasive plant occurrence records, we could identify additional problematic invasive plants that had been previously overlooked. Model-based watch lists of ‘doorstep species’ are useful tools because they can objectively alert land managers to threats from invasive plants with high likelihood of establishment.  相似文献   

3.
Losses of grasslands have been largely attributed to widespread land-use changes, such as conversion to row-crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non-native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non-native plants. In addition to the direct and indirect effects of non-native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam-pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non-native invasive Bothriochloa bladhii (Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30% B. bladhii cover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non-native species.  相似文献   

4.
Invasive species managers utilise species records to inform management. These data can also be used in Species Distribution Models (SDM) to predict future spread or potential invasion of new areas. However, issues with non-equilibrium (also called disequilibrium) can cause difficulties in modelling invasive species that have not fully colonised their potential distribution and, in addition, sampling bias can result from a lack of information on survey effort, a particular issue for presence only modelling techniques. Geographical confounds are unavoidable when building iSDMs but there are methods that allow prediction to be optimised. We used maximum entropy (Maxent) to model suitable habitat for invasive Reeve's muntjac deer (Muntiacus reevesi) throughout Great Britain and Ireland comparing several methods that aimed to address invasive Species Distribution Modelling (iSDM) bias including spatial filtering, weighted background points and targeted background points built at varying spatial extents. Model evaluation metrics suggested that the model, which explicitly failed to account for non-equilibrium at the full extent of Great Britain and Ireland using random background points, predicted the species' current invasive range best. This highlighted that negative environmental relationships are likely to represent uncolonised areas rather than habitat selection and thus, low predicted suitability of uncolonised areas was misleading. Of the models that dealt with non-equilibrium conceptually best, by restricting the training extent to their current invasive range or core range, and utilised targeted background points accounting for survey effort (cells with other deer species recorded as present yet with no records for muntjac) as the best model evaluation metric, yielded relatively poor predictive performance. This implied limited habitat selectivity or avoidance within the colonised range which, when spatially extrapolated, suggested virtually all regions in Great Britain and Ireland may be vulnerable to future muntjac invasion.  相似文献   

5.
Detailed knowledge of patterns of native species richness, an important component of biodiversity, and non-native species invasions is often lacking even though this knowledge is essential to conservation efforts. However, we cannot afford to wait for complete information on the distribution and abundance of native and harmful invasive species. Using information from counties well surveyed for plants across the USA, we developed models to fill data gaps in poorly surveyed areas by estimating the density (number of species km−2) of native and non-native plant species. Here, we show that native plant species density is non-random, predictable, and is the best predictor of non-native plant species density. We found that eastern agricultural sites and coastal areas are among the most invaded in terms of non-native plant species densities, and that the central USA appears to have the greatest ratio of non-native to native species. These large-scale models could also be applied to smaller spatial scales or other taxa to set priorities for conservation and invasion mitigation, prevention, and control efforts.  相似文献   

6.
Invasions of non-native species are considered to have significant impacts on native species, but few studies have quantified the direct effects of invasions on native community structure and composition. Many studies on the effects of invasions fail to distinguish between (1) differential responses of native and non-native species to environmental conditions, and (2) direct impacts of invasions on native communities. In particular, invasions may alter community assembly following disturbance and prevent recolonization of native species. To determine if invasions directly impact native communities, we established 32 experimental plots (27.5 m2) and seeded them with 12 native species. Then, we added seed of a non-native invasive grass (Microstegium vimineum) to half of the plots and compared native plant community responses between control and invaded plots. Invasion reduced native biomass by 46, 64, and 58%, respectively, over three growing seasons. After the second year of the experiment, invaded plots had 43% lower species richness and 38% lower diversity as calculated from the Shannon index. Nonmetric multidimensional scaling ordination showed a significant divergence in composition between invaded and control plots. Further, there was a strong negative relationship between invader and native plant biomass, signifying that native plants are more strongly suppressed in densely invaded areas. Our results show that a non-native invasive plant inhibits native species establishment and growth following disturbance and that native species do not gain competitive dominance after multiple growing seasons. Thus, plant invaders can alter the structure of native plant communities and reduce the success of restoration efforts.  相似文献   

7.
Conservation planning with insects at three different spatial scales   总被引:1,自引:0,他引:1  
Deciding which areas to protect, and where to manage and how, are no easy tasks. Many protected areas were established opportunistically under strong political and economic constraints, which may have resulted in inefficient and ineffective conservation. Systematic conservation planning has helped us move from ad-hoc decisions to a quantitative and transparent decision-making process, identifying conservation priorities that achieve explicit objectives in a cost-efficient manner. Here we use Finnish butterflies to illustrate different modeling approaches to address three different types of situations in conservation planning at three different spatial scales. First, we employ species distribution models at the national scale to construct a conservation priority map for 91 species at the resolution of 10×10  km. Species distribution models interpolate sparse occurrence data to infer variation in habitat suitability and to predict species responses to habitat loss, management actions and climate change. Second, at the regional scale we select the optimal management plan to protect a set of habitat specialist species. And third, at the landscape scale, we use a metapopulation approach to manage a network of habitat patches for long-term persistence of a single butterfly species. These different modeling approaches illustrate trade-offs between complexity and tractability and between generality and precision. General correlation-based models are helpful to set priorities for multiple species at large spatial scales. More specific management questions at smaller scales require further data and more complex models. The vast numbers of insect species with diverse ecologies provide a source of information that has remained little used in systematic conservation planning.  相似文献   

8.
Habitat suitability models developed for non-native, invasive species often implicitly assume that projected invasion risk equates to risk of impact. I aim to test to what extent this assumption is true by comparing commonly-used invasive plant distribution datasets to abundance records. I compared herbarium occurrence records (downloaded from an online database) and regional occurrence records (compiled from individual states) to abundance estimates collected from over 300 invasive plant experts for 9 invasive species in the western U.S. I also created habitat suitability models (HSMs) using these datasets and compared the areas of predicted suitability. Sixty percent of the time, herbarium occurrences were located in regions where the species was rare enough to be undetected by experts, while only 26 % coincided with locations identified as having high abundance. Regional occurrences were located in areas where the species was not detected 32 % of the time, and on high abundance 42 % of the time. HSMs based on herbarium records encompassed 89 % of land area at risk of abundance, but overestimated the area of estimated risk (27–46 % false positive rate). HSMs based on regional occurrences had a smaller false positive rate (22–31 %), but encompassed only 67–68 % of area suitable for abundance. Herbarium records are strongly skewed towards locations with low invasive plant abundance, leading to invasion risk models that vastly overestimate abundance risk. Models based on occurrence points should be interpreted as risk of establishment only, not risk of abundance or impact. If HSMs aim to be more management relevant, invasion risk models should include abundance as well as occurrence.  相似文献   

9.
Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas.  相似文献   

10.
Predicting the probability of successful establishment and invasion of alien species at global scale, by matching climatic and land use data, is a priority for the risk assessment. Both large- and local-scale factors contribute to the outcome of invasions, and should be integrated to improve the predictions. At global scale, we used climatic and land use layers to evaluate the habitat suitability for the American bullfrog Rana catesbeiana , a major invasive species that is among the causes of amphibian decline. Environmental models were built by using Maxent, a machine learning method. Then, we integrated global data with information on richness of native communities and hunting pressure collected at the local scale. Global-scale data allowed us to delineate the areas with the highest suitability for this species. Predicted suitability was significantly related to the invasiveness observed for bullfrog populations historically introduced in Europe, but did not explain a large portion of variability in invasion success. The integration of data at the global and local scales greatly improved the performance of models, and explained > 57% of the variance in introduction success: bullfrogs were more invasive in areas with high suitability and low hunting pressure over frogs. Our study identified the climatic factors entailing the risk of invasion by bullfrogs, and stresses the importance of the integration of biotic and abiotic data collected at different spatial scales, to evaluate the areas where monitoring and management efforts need to be focused.  相似文献   

11.
小兴安岭阔叶红松林木本植物种-面积关系   总被引:1,自引:1,他引:0  
王睿智  国庆喜 《生态学报》2016,36(13):4091-4098
种-面积关系研究是了解植物群落结构的重要途径,是群落生态学的基本问题。不同的研究方法对种-面积关系影响很大。利用黑龙江省小兴安岭两个10.4 hm2样地和5个1.0 hm2样地的调查数据,采用移动窗口法确定各样地的最小取样面积,避免了巢式取样法及随机样方法的不足。并采用4种种-面积关系模型进行拟合,评价各关系模型的适合度。在此基础上,基于最小面积进行模拟随机取样,探讨取样大小对物种数估计精度的影响。研究结果表明:由于拟合曲线模型的适用性及曲线外推可靠性问题的存在,采用拟合曲线的方法所估计的最小面积与实际值偏差较大。实际调查得到的各样地最小面积40 m×40 m—45 m×45 m,说明小兴安岭地区阔叶红松林群落所需的最小面积基本一致,但各样地群落结构的差异却在对取样数量的要求上体现出来。其中丰林与大亮子河样地物种数分布相对均匀,所需最小样方数量较少;而方正与胜山样地物种数分布异质性较大,差异的机理还有待于进一步研究。  相似文献   

12.
Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.  相似文献   

13.
Abstract. The effect of fire on annual plants was examined in two vegetation types at remnant vegetation edges in the Western Australian wheatbelt. Density and cover of non-native species were consistently greatest at the reserve edges, decreasing rapidly with increasing distance from reserve edge. Numbers of native species showed little effect of distance from reserve edge. Fire had no apparent effect on abundance of non-natives in Allocasuarina shrubland but abundance of native plants increased. Density of both non-native and native plants in Acacia acuminata-Eucalyptus loxophleba woodland decreased after fire. Fewer non-native species were found in the shrubland than in the woodland in both unburnt and burnt areas, this difference being smallest between burnt areas. Levels of soil phosphorus and nitrate were higher in burnt areas of both communities and ammonium also increased in the shrubland. Levels of soil phosphorus and nitrate were higher at the reserve edge in the unburnt shrubland, but not in the woodland. There was a strong correlation between soil phosphorus levels and abundance of non-native species in the unburnt shrubland, but not after fire or in the woodland. Removal of non-native plants in the burnt shrubland had a strong positive effect on total abundance of native plants, apparently due to increases in growth of smaller, suppressed native plants in response to decreased competition. Two native species showed increased seed production in plots where non-native plants had been removed. There was a general indication that, in the short term, fire does not necessarily increase invasion of these communities by non-native species and could, therefore be a useful management tool in remnant vegetation, providing other disturbances are minimised.  相似文献   

14.
Modelling and predicting the potential habitat and future range expansion of invasive species can help managers to mitigate the impact of such species. Because habitat suitability and the colonization process are key determinants of range expansion, inferences drawn from invasion patterns should be based on both attributes. To predict the potential habitat and expansion rate of the invasive tree Bischofia javanica on Hahajima Island, we used simultaneous models of habitat and dispersal to estimate the effect of environment and dispersal from the source population on the current distribution. We compared the fit and the estimated magnitudes of the environment and dispersal effects in the simultaneous models with those in habitat suitability and colonization kernel models. The values of Akaike’s information criterion for the simultaneous models were better than those of the habitat suitability and colonization kernel models, indicating that the current distribution of Bischofia was determined by both environment and dispersal. The simultaneous models predicted that the potential habitat of Bischofia would be larger than that predicted by the habitat suitability model. The potential habitat distribution and future invasion predicted by the simultaneous models will contribute to the development of specific landscape-scale management plans to control this invasive species.  相似文献   

15.
Given the limited resources available for weed management, a strategic approach is required to give the “best bang for your buck.” The current study incorporates: (1) a model ensemble approach to identify areas of uncertainty and commonality regarding a species invasive potential, (2) current distribution of the invaded species, and (3) connectivity of systems to identify target regions and focus efforts for more effective management. Uncertainty in the prediction of suitable habitat for H. amplexicaulis (study species) in Australia was addressed in an ensemble-forecasting approach to compare distributional scenarios from four models (CLIMATCH; CLIMEX; boosted regression trees [BRT]; maximum entropy [Maxent]). Models were built using subsets of occurrence and environmental data. Catchment risk was determined through incorporating habitat suitability, the current abundance and distribution of H. amplexicaulis, and catchment connectivity. Our results indicate geographic differences between predictions of different approaches. Despite these differences a number of catchments in northern, central, and southern Australia were identified as high risk of invasion or further spread by all models suggesting they should be given priority for the management of H. amplexicaulis. The study also highlighted the utility of ensemble approaches in indentifying areas of uncertainty and commonality regarding the species’ invasive potential.  相似文献   

16.
Mountain environments are currently among the ecosystems least invaded by non-native species; however, mountains are increasingly under threat of non-native plant invasion. The slow pace of exotic plant invasions in mountain ecosystems is likely due to a combination of low anthropogenic disturbances, low propagule supply, and extreme/steep environmental gradients. The importance of any one of these factors is debated and likely ecosystem dependent. We evaluated the importance of various correlates of plant invasions in the Wallowa Mountain Range of northeastern Oregon and explored whether non-native species distributions differed from native species along an elevation gradient. Vascular plant communities were sampled in summer 2012 along three mountain roads. Transects (n = 20) were evenly stratified by elevation (~70 m intervals) along each road. Vascular plant species abundances and environmental parameters were measured. We used indicator species analysis to identify habitat affinities for non-native species. Plots were ordinated in species space, joint plots and non-parametric multiplicative regression were used to relate species and community variation to environmental variables. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness occurring at mid–elevations. Species composition was strongly related to elevation and canopy openness. Overlays of trait and environmental factors onto non-metric multidimensional ordinations identified the montane-subalpine community transition and over-story canopy closure exceeding 60% as potential barriers to non-native species establishment. Unlike native species, non-native species showed little evidence for high-elevation or closed-canopy specialization. These data suggest that non-native plants currently found in the Wallowa Mountains are dependent on open canopies and disturbance for establishment in low and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones.  相似文献   

17.
During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH) is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community) or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native). Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines) in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.  相似文献   

18.
The invasion of ecosystems by non-native species is a major driver of biodiversity loss worldwide. A critical component of effective land management to control invasion is the identification and active protection of areas at high risk of future invasion. The Appalachian Trail Decision Support System (A.T.-DSS) was developed to inform regional natural resource management by integrating remote sensing data, ground-based measurements and predictive modelling products. By incorporating NASA''s remote sensing data and modelling capacities from the Terrestrial Observation and Prediction System (TOPS), this study examined the current habitat suitability and projected suitable habitat for the invasive species tree-of-heaven (Ailanthus altissima) as a prototype application of the A.T.-DSS. Species observations from forest surveys, geospatial data, climatic projections and maximum entropy modelling were used to identify regions potentially susceptible to tree-of-heaven invasion. The modelling result predicted a 48% increase in suitable area over the study area, with significant expansion along the northern extremes of the Appalachian Trail.  相似文献   

19.

For insect herbivores, a critical niche requirement—possibly the critical niche requirement—is the presence of suitable host plants. Current research suggests that non-native plants are not as suitable as native plants for native herbivores, resulting in decreases in insect abundance and richness on non-native plants. Like herbivores, gall-forming insects engage in complex, species-specific interactions with host plants. Galls are plant tissue tumors (including bulbous or spindle-shaped protrusions on leaves, stems and other plant organs) that are induced by insects through physical or chemical damage (prompting plants to grow a protective tissue shell around the insect eggs and larvae). As such, we hypothesized that gall-inducing insect species richness would be higher on native than non-native plants. We also predicted higher gall-inducing insect species richness on woody than herbaceous plants. We used an extensive literature review in which we compiled gall host plant species by genus, and we assigned native or non-native (or mixed) status to each genus. We found that native plants host far more gall-inducing insect species than non-native plants; woody plants host more gall-inducing species than herbaceous plants; and native woody plants host the most gall-inducing species of all. Gall-inducing species generally are a very cryptic group, even for experts, and hence do not elicit the conservation efforts of more charismatic insects such as plant pollinators. Our results suggest that non-native plants, particularly non-native woody species, diminish suitable habitat for gall-inducing species in parallel with similar results found for other herbivores, such as Lepidopterans. Hence, the landscape-level replacement of native with non-native species, particularly woody ones, degrades taxonomically diverse gall-inducing species (and their inquilines and parasitoids), removing multiple layers of diversity from forest ecosystems.

  相似文献   

20.
The effects of non-native species invasions on community diversity and biotic homogenization have been described for various taxa in urban environments, but not for land snails. Here we relate the diversity of native and non-native land-snail urban faunas to urban habitat types and macroclimate, and analyse homogenization effects of non-native species across cities and within the main urban habitat types. Land-snail species were recorded in seven 1-ha plots in 32 cities of ten countries of Central Europe and Benelux (224 plots in total). Each plot represented one urban habitat type characterized by different management and a specific disturbance regime. For each plot, we obtained January, July and mean annual temperature and annual precipitation. Snail species were classified into either native or non-native. The effects of habitat type and macroclimate on the number of native and non-native species were analysed using generalized estimating equations; the homogenization effect of non-native species based on the Jaccard similarity index and homogenization index. We recorded 67 native and 20 non-native species. Besides being more numerous, native species also had much higher beta diversity than non-natives. There were significant differences between the studied habitat types in the numbers of native and non-native species, both of which decreased from less to heavily urbanized habitats. Macroclimate was more important for the number of non-native than native species; however in both cases the effect of climate on diversity was overridden by the effect of urban habitat type. This is the first study on urban land snails documenting that non-native land-snail species significantly contribute to homogenization among whole cities, but both the homogenization and diversification effects occur when individual habitat types are compared among cities. This indicates that the spread of non-native snail species may cause biotic homogenization, but it depends on scale and habitat type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号