首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We show the presence of numerous short tandem repeats in the human cytomegalovirus (HCMV) genome and assess their usefulness as molecular markers. The genome is shown to contain at least 24 microsatellite regions that exhibit length polymorphisms. Insertion-deletion polymorphisms at these short tandem repeats are common (80% of repeats examined are polymorphic among two laboratory strains and 10 clinical isolates). This is the first report of widespread microsatellite length polymorphism in a viral genome. Some regions are highly polymorphic: one was revealed by DNA sequencing to contain length variants at five closely linked sites, which combined resulted in 10 variants for this region among the 12 strains and isolates examined. This study not only provides a new molecular marker system for this virus but also extends our understanding of microsatellite polymorphism in two important ways. First, variable-length repeats in HCMV can be considerably shorter than polymorphic repeats previously found in other organisms. Second, highly variable microsatellite repeats are not confined to prokaryotes and eukaryotes, as previously assumed. This variation provides a useful marker system for distinguishing viral isolates, and similar markers are also likely to be found in other large-genome DNA viruses.  相似文献   

3.
4.
Interpreting the genomic and phenotypic consequences of copy-number variation (CNV) is essential to understanding the etiology of genetic disorders. Whereas deletion CNVs lead obviously to haploinsufficiency, duplications might cause disease through triplosensitivity, gene disruption, or gene fusion at breakpoints. The mutational spectrum of duplications has been studied at certain loci, and in some cases these copy-number gains are complex chromosome rearrangements involving triplications and/or inversions. However, the organization of clinically relevant duplications throughout the genome has yet to be investigated on a large scale. Here we fine-mapped 184 germline duplications (14.7 kb–25.3 Mb; median 532 kb) ascertained from individuals referred for diagnostic cytogenetics testing. We performed next-generation sequencing (NGS) and whole-genome sequencing (WGS) to sequence 130 breakpoints from 112 subjects with 119 CNVs and found that most (83%) were tandem duplications in direct orientation. The remainder were triplications embedded within duplications (8.4%), adjacent duplications (4.2%), insertional translocations (2.5%), or other complex rearrangements (1.7%). Moreover, we predicted six in-frame fusion genes at sequenced duplication breakpoints; four gene fusions were formed by tandem duplications, one by two interconnected duplications, and one by duplication inserted at another locus. These unique fusion genes could be related to clinical phenotypes and warrant further study. Although most duplications are positioned head-to-tail adjacent to the original locus, those that are inverted, triplicated, or inserted can disrupt or fuse genes in a manner that might not be predicted by conventional copy-number assays. Therefore, interpreting the genetic consequences of duplication CNVs requires breakpoint-level analysis.  相似文献   

5.
Nine rare (biallelic) mutations and six short tandem repeats (STR) mapping to the nonrecombining portion of the Y chromosome were genotyped in 734 males from different geographical regions inhabited by the contemporary Armenian population. The analysis of molecular variance (AMOVA) showed that 48.9% of total STR genetic variation was explained by the differences between the haplogroups isolated based on biallelic polymorphism, whereas only 1.3% of genetic variation could be attributed to the differences between the geographic groups.  相似文献   

6.
7.
Oparina  N. Yu.  Lacroix  M.-H.  Rychkov  A. A.  Mashkova  T. D. 《Molecular Biology》2003,37(2):200-204
Intrachromosomal and interchromosomal segmental duplications account for more than 5% of the human genome. To analyze the processes resulting in the complex mosaic structure of duplicons, a draft human genome sequence was searched for duplicated segments of a genomic fragment of the pericentric region of the chromosome 21 short arm. The duplicons found consist of modules having paralogs in various genome regions. Module ends are flanked with various tandem or interspersed repeats, which are more unstable as compared with unique sequences. In most cases, the boundaries of duplicated segments exactly coincide with or are in close proximity to hot spots of various rearrangements within repeats or boundaries between repeats and unique sequences or between two different repeats. Homologous recombination between repetitive elements was assumed to be the major mechanism contributing to the mosaic structure of duplicons.  相似文献   

8.

Background

Researchers have provided evidence that telomere dysfunction play an important role in cancer development. MNS16A is a polymorphic tandem repeats minisatellite of human telomerase (hTERT) gene that influences promoter activity of hTERT and thus implicates to relate with risk of several malignancies. However, results on association between MNS16A and cancer risk remain controversial. We therefore conduct a meta-analysis to derive a more precise estimation of association between MNS16A and cancer risk.

Methods

A systematic literature search was conducted by searching PubMed, ISI Web of Knowledge, Human Genome and Epidemiology Network Navigator and Google Scholar digital database for publications on associations between MNS16A and cancer risk. Variants with statistically significant associations by meta-analysis were assessed using Venice criteria.

Results

10 case-control articles enrolling 6101 cases and 10521 controls were brought into our meta-analysis. The relationships were strong epidemiological credibility in cerebral cancer and breast cancer population (P for heterogeneity > 0.1). The cumulative analysis in chronologic order suggested a clear tendency towards a significant association with additional study samples.

Conclusions

The results provided a more accurate depiction of the role of MNS16A in cerebral cancer and breast cancer susceptibility. Additional larger studies were warranted to validate our findings.  相似文献   

9.
Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains.  相似文献   

10.
11.
Biochemical and genetic evidence suggest that the SWI/SNF complex is involved in the remodeling of chromatin during gene activation. We have used antibodies specific against three human subunits of this complex to study its subnuclear localization, as well as its potential association with active chromatin and the nuclear skeleton. Immunofluorescence studies revealed a punctate nuclear labeling pattern that was excluded from the nucleoli and from regions of condensed chromatin. Dual labeling failed to reveal significant colocalization of BRG1 or hBRM proteins with RNA polymerase II or with nuclear speckles involved in splicing. Chromatin fractionation experiments showed that both soluble and insoluble active chromatin are enriched in the hSWI/SNF proteins as compared with bulk chromatin. hSWI/SNF proteins were also found to be associated with the nuclear matrix or nuclear scaffold, suggesting that a fraction of the hSWI/SNF complex could be involved in the chromatin organization properties associated with matrix attachment regions.  相似文献   

12.
Several human neurodegenerative disorders are caused by the expansion of polymorphic trinucleotide repeat regions. Many of these loci are functional short tandem repeats (STRs) located in brain-expressed genes, and their study is thus relevant from both a medical and an evolutionary point of view. The aims of our study are to infer the comparative pattern of variation and evolution of this set of loci in order to show species-specific features in this group of STRs and on their potential for expansion (therefore, an insight into evolutionary medicine) and to unravel whether any human-specific feature may be identified in brain-expressed genes involved in human disease. We analyzed the variability of the normal range of seven expanding STR CAG/CTG loci (SCA1, SCA2, SCA3-MJD, SCA6, SCA8, SCA12, and DRPLA) and two nonexpanding polymorphic CAG loci (KCNN3 and NCOA3) in humans, chimpanzees, gorillas, and orangutans. The study showed a general conservation of the repetitive tract and of the polymorphism in the four species and high heterogeneity among loci distributions. Humans present slightly larger alleles than the rest of species but a more relevant difference appears in variability levels: Humans are the species with the largest variance, although only for the expanding loci, suggesting a relationship between variability levels and expansion potential. The sequence analysis shows high levels of sequence conservation among species, a lack of correspondence between interruption patterns and variability levels, and signs of conservative selective pressure for some of the STR loci. Only two loci (SCA1 and SCA8) show a human specific distribution, with larger alleles than the rest of species. This could account, at the same time, for a human-specific trait and a predisposition to disease through expansion.This article contains online supplementary material.  相似文献   

13.
A series of vectors with heterologous genes was constructed from HSRV1, an infectious clone of human foamy virus (HFV), and transfected into baby hamster kidney cells to generate stably transfected vector cell lines. Two cis-acting sequences were required to achieve efficient rescue by helper virus. The first element was located at the 5′ end upstream of position 1274 of the proviral DNA. Interestingly, a mutation in the leader sequence which decreased the ability to dimerize in vitro inhibited transfer by helper HFV. A second element that was important for vector transfer was located in the pol gene between positions 5638 and 6317. Constructs lacking this element were only poorly transferred by helper HFV, even though their RNA was produced in the vector cell lines. This finding rules out the possibility that the observed lack of transfer was due to RNA instability. A minimal vector containing only these two elements could be successfully delivered by helper HFV, confirming that all essential cis-acting sequences were present. The presence of a sequence described as a second polypurine tract in HFV was not necessary for transfer. Our data identified the minimal sequence requirements for HFV vector transfer for the development of useful vector systems.  相似文献   

14.
从XNP基因内部筛选多态性较强的多态基因座,为连锁分析和间接诊断奠定基因,通过核酸同源性分析获得含有XNP基因的基因组克隆,并通过对比分析cDNA与基因组DNA的对应关系确定基因的非外显子序列,利用BCMSearch Launcher程序从中筛选短串联重复序列,采用PCR扩增技术和聚丙烯酰胺凝胶电泳方法,对所筛选出的短串联重复序列进行多态性分析,结果从XNP基因内筛选出5个短串联重复序列,多态性分析表明,其中的2个短串联重复序列(XNPSTR1和XNPSTR4)具有多态性,在100名无血缘关系的女性中,分别观察到4和11个等位基因,杂合度分别为47%和70%,XNPSTR1位于XNP基因的3′端,XNPSTR4位于第10内含子,结论是:从XNP基因内筛选出两个多态位点,可用于XNP基因的连锁分析和间接基因诊断。  相似文献   

15.
The formation of the allotetraploid hybrid lineage (4nAT) encompasses both distant hybridization and polyploidization processes. The allotetraploid offspring have two sets of sub-genomes inherited from both parental species, and therefore, it is important to explore its genetic structure. Herein, we construct a bacterial artificial chromosome library of allotetraploids, and then sequence and analyze the full-length sequences of 19 bacterial artificial chromosomes. Sixty-eight DNA chimeras are identified, which are divided into four models according to the distribution of the genomic DNA derived from the parents. Among the 68 genetic chimeras, 44 (64.71%) are linked to tandem repeats (TRs) and 23 (33.82%) are linked to transposable elements (TEs). The chimeras linked to TRs are related to slipped-strand mispairing and double-strand break repair while the chimeras linked to TEs benefit from the intervention of recombinases. In addition, TRs and TEs can also result in insertions/deletions of DNA segments. We conclude that DNA chimeras accompanied by TRs and TEs coordinate a balance between the sub-genomes derived from the parents. It is the first report on the relationship between formation of the DNA chimeras and TRs and TEs in the polyploid animals.  相似文献   

16.
Comparison of human and chimpanzee genomes has received much attention, because of paramount role for understanding evolutionary step distinguishing us from our closest living relative. In order to contribute to insight into Y chromosome evolutionary history, we study and compare tandems, higher order repeats (HORs), and regularly dispersed repeats in human and chimpanzee Y chromosome contigs, using robust Global Repeat Map algorithm. We find a new type of long-range acceleration, human-accelerated HOR regions. In peripheral domains of 35mer human alphoid HORs, we find riddled features with ten additional repeat monomers. In chimpanzee, we identify 30mer alphoid HOR. We construct alphoid HOR schemes showing significant human–chimpanzee difference, revealing rapid evolution after human–chimpanzee separation. We identify and analyze over 20 large repeat units, most of them reported here for the first time as: chimpanzee and human ~1.6 kb 3mer secondary repeat unit (SRU) and ~23.5 kb tertiary repeat unit (~0.55 kb primary repeat unit, PRU); human 10848, 15775, 20309, 60910, and 72140 bp PRUs; human 3mer SRU (~2.4 kb PRU); 715mer and 1123mer SRUs (5mer PRU); chimpanzee 5096, 10762, 10853, 60523 bp PRUs; and chimpanzee 64624 bp SRU (10853 bp PRU). We show that substantial human–chimpanzee differences are concentrated in large repeat structures, at the level of as much as ~70% divergence, sizably exceeding previous numerical estimates for some selected noncoding sequences. Smeared over the whole sequenced assembly (25 Mb) this gives ~14% human–chimpanzee divergence. This is significantly higher estimate of divergence between human and chimpanzee than previous estimates.  相似文献   

17.
18.
19.
构巢曲霉菌基因组中的数量可变重复序列的组成和分布   总被引:1,自引:0,他引:1  
利用已经公布的构巢曲霉菌基因组测序结果,对该真菌已测序基因组(30.1Mb)中的数量可变重复(VNTR)序列进行了较为系统、全面地分析。结果表明,在已经公布的基因组序列中,共有4837个以1—6个核苷酸为基序的VNTR序列(长度大于15bp,匹配值大于80%),其碱基总数占整个基因组碱基数的0.31%,平均6.2kb碱基中分布有一个大于15bp的VNTR。其中数量最多的五碱基VNTR。数量达到1386个,其次为六碱基VNTR(1228个),三碱基VNTR(1199个),这3种VNTR总数达3813个,占VNTR总数的78.8%。数量最少的是二碱基VNTR,只有144个。在9541个开放阅读框架(ORF)中的VNTR总数为1683个,共分布于1356个0RF中。其中只有1个VNTR的ORF为1117个。与其他生物内VNTR的分布类似,在基因编码区中,以三碱基VNTR和六碱基VNTR占绝对优势,在阅读框架中的VNTR中分别占到58.0%和52.9%。编码区的三碱基、六碱基VNTR分别为该菌基因组中相应VNTR总数的约44.4%和38.6%。由于编码区的碱基数占基因组碱基数的59.3%,所以这两种长度的VNTR在编码区中的密度略低于基因组中的平均密度。在编码区上下游300bp调控区,除在编码区数量较多的三碱基VNTR和六碱基VNTR外,其他各种长度的VNTR的比例都超过了10%。可见300bp的上下游调控区域是单碱基、二碱基、四碱基、五碱基VNTR的富集区。在上游区域中,单碱基、二碱基和四碱基VNTR的比例比下游区域中多,五碱基VNTR的数量则基本一致。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号