首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotyping sheep for genome‐wide SNPs at lower density and imputing to a higher density would enable cost‐effective implementation of genomic selection, provided imputation was accurate enough. Here, we describe the design of a low‐density (12k) SNP chip and evaluate the accuracy of imputation from the 12k SNP genotypes to 50k SNP genotypes in the major Australian sheep breeds. In addition, the impact of imperfect imputation on genomic predictions was evaluated by comparing the accuracy of genomic predictions for 15 novel meat traits including carcass and meat quality and omega fatty acid traits in sheep, from 12k SNP genotypes, imputed 50k SNP genotypes and real 50k SNP genotypes. The 12k chip design included 12 223 SNPs with a high minor allele frequency that were selected with intermarker spacing of 50–475 kb. SNPs for parentage and horned or polled tests also were represented. Chromosome ends were enriched with SNPs to reduce edge effects on imputation. The imputation performance of the 12k SNP chip was evaluated using 50k SNP genotypes of 4642 animals from six breeds in three different scenarios: (1) within breed, (2) single breed from multibreed reference and (3) multibreed from a single‐breed reference. The highest imputation accuracies were found with scenario 2, whereas scenario 3 was the worst, as expected. Using scenario 2, the average imputation accuracy in Border Leicester, Polled Dorset, Merino, White Suffolk and crosses was 0.95, 0.95, 0.92, 0.91 and 0.93 respectively. Imputation scenario 2 was used to impute 50k genotypes for 10 396 animals with novel meat trait phenotypes to compare genomic prediction accuracy using genomic best linear unbiased prediction (GBLUP) with real and imputed 50k genotypes. The weighted mean imputation accuracy achieved was 0.92. The average accuracy of genomic estimated breeding values (GEBVs) based on only 12k data was 0.08 across traits and breeds, but accuracies varied widely. The mean GBLUP accuracies with imputed 50k data more than doubled to 0.21. Accuracies of genomic prediction were very similar for imputed and real 50k genotypes. There was no apparent impact on accuracy of GEBVs as a result of using imputed rather than real 50k genotypes, provided imputation accuracy was >90%.  相似文献   

2.
In livestock, many studies have reported the results of imputation to 50k single nucleotide polymorphism (SNP) genotypes for animals that are genotyped with low-density SNP panels. The objective of this paper is to review different measures of correctness of imputation, and to evaluate their utility depending on the purpose of the imputed genotypes. Across studies, imputation accuracy, computed as the correlation between true and imputed genotypes, and imputation error rates, that counts the number of incorrectly imputed alleles, are commonly used measures of imputation correctness. Based on the nature of both measures and results reported in the literature, imputation accuracy appears to be a more useful measure of the correctness of imputation than imputation error rates, because imputation accuracy does not depend on minor allele frequency (MAF), whereas imputation error rate depends on MAF. Therefore imputation accuracy can be better compared across loci with different MAF. Imputation accuracy depends on the ability of identifying the correct haplotype of a SNP, but many other factors have been identified as well, including the number of genotyped immediate ancestors, the number of animals with genotypes at the high-density panel, the SNP density on the low- and high-density panel, the MAF of the imputed SNP and whether imputed SNP are located at the end of a chromosome or not. Some of these factors directly contribute to the linkage disequilibrium between imputed SNP and SNP on the low-density panel. When imputation accuracy is assessed as a predictor for the accuracy of subsequent genomic prediction, we recommend that: (1) individual-specific imputation accuracies should be used that are computed after centring and scaling both true and imputed genotypes; and (2) imputation of gene dosage is preferred over imputation of the most likely genotype, as this increases accuracy and reduces bias of the imputed genotypes and the subsequent genomic predictions.  相似文献   

3.
Although genomic selection offers the prospect of improving the rate of genetic gain in meat, wool and dairy sheep breeding programs, the key constraint is likely to be the cost of genotyping. Potentially, this constraint can be overcome by genotyping selection candidates for a low density (low cost) panel of SNPs with sparse genotype coverage, imputing a much higher density of SNP genotypes using a densely genotyped reference population. These imputed genotypes would then be used with a prediction equation to produce genomic estimated breeding values. In the future, it may also be desirable to impute very dense marker genotypes or even whole genome re‐sequence data from moderate density SNP panels. Such a strategy could lead to an accurate prediction of genomic estimated breeding values across breeds, for example. We used genotypes from 48 640 (50K) SNPs genotyped in four sheep breeds to investigate both the accuracy of imputation of the 50K SNPs from low density SNP panels, as well as prospects for imputing very dense or whole genome re‐sequence data from the 50K SNPs (by leaving out a small number of the 50K SNPs at random). Accuracy of imputation was low if the sparse panel had less than 5000 (5K) markers. Across breeds, it was clear that the accuracy of imputing from sparse marker panels to 50K was higher if the genetic diversity within a breed was lower, such that relationships among animals in that breed were higher. The accuracy of imputation from sparse genotypes to 50K genotypes was higher when the imputation was performed within breed rather than when pooling all the data, despite the fact that the pooled reference set was much larger. For Border Leicesters, Poll Dorsets and White Suffolks, 5K sparse genotypes were sufficient to impute 50K with 80% accuracy. For Merinos, the accuracy of imputing 50K from 5K was lower at 71%, despite a large number of animals with full genotypes (2215) being used as a reference. For all breeds, the relationship of individuals to the reference explained up to 64% of the variation in accuracy of imputation, demonstrating that accuracy of imputation can be increased if sires and other ancestors of the individuals to be imputed are included in the reference population. The accuracy of imputation could also be increased if pedigree information was available and was used in tracking inheritance of large chromosome segments within families. In our study, we only considered methods of imputation based on population‐wide linkage disequilibrium (largely because the pedigree for some of the populations was incomplete). Finally, in the scenarios designed to mimic imputation of high density or whole genome re‐sequence data from the 50K panel, the accuracy of imputation was much higher (86–96%). This is promising, suggesting that in silico genome re‐sequencing is possible in sheep if a suitable pool of key ancestors is sequenced for each breed.  相似文献   

4.
The objective of this study was to quantify the accuracy of imputing the genotype of parents using information on the genotype of their progeny and a family-based and population-based imputation algorithm. Two separate data sets were used, one containing both dairy and beef animals (n=3122) with high-density genotypes (735 151 single nucleotide polymorphisms (SNPs)) and the other containing just dairy animals (n=5489) with medium-density genotypes (51 602 SNPs). Imputation accuracy of three different genotype density panels were evaluated representing low (i.e. 6501 SNPs), medium and high density. The full genotypes of sires with genotyped half-sib progeny were masked and subsequently imputed. Genotyped half-sib progeny group sizes were altered from 4 up to 12 and the impact on imputation accuracy was quantified. Up to 157 and 258 sires were used to test the accuracy of imputation in the dairy plus beef data set and the dairy-only data set, respectively. The efficiency and accuracy of imputation was quantified as the proportion of genotypes that could not be imputed, and as both the genotype concordance rate and allele concordance rate. The median proportion of genotypes per animal that could not be imputed in the imputation process decreased as the number of genotyped half-sib progeny increased; values for the medium-density panel ranged from a median of 0.015 with a half-sib progeny group size of 4 to a median of 0.0014 to 0.0015 with a half-sib progeny group size of 8. The accuracy of imputation across different paternal half-sib progeny group sizes was similar in both data sets. Concordance rates increased considerably as the number of genotyped half-sib progeny increased from four (mean animal allele concordance rate of 0.94 in both data sets for the medium-density genotype panel) to five (mean animal allele concordance rate of 0.96 in both data sets for the medium-density genotype panel) after which it was relatively stable up to a half-sib progeny group size of eight. In the data set with dairy-only animals, sufficient sires with paternal half-sib progeny groups up to 12 were available and the within-animal mean genotype concordance rates continued to increase up to this group size. The accuracy of imputation was worst for the low-density genotypes, especially with smaller half-sib progeny group sizes but the difference in imputation accuracy between density panels diminished as progeny group size increased; the difference between high and medium-density genotype panels was relatively small across all half-sib progeny group sizes. Where biological material or genotypes are not available on individual animals, at least five progeny can be genotyped (on either a medium or high-density genotyping platform) and the parental alleles imputed with, on average, ⩾96% accuracy.  相似文献   

5.
The objective of this study was to quantify the accuracy achievable from imputing genotypes from a commercially available low-density marker panel (2730 single nucleotide polymorphisms (SNPs) following edits) to a commercially available higher density marker panel (51 602 SNPs following edits) in Holstein-Friesian cattle using Beagle, a freely available software package. A population of 764 Holstein-Friesian animals born since 2006 were used as the test group to quantify the accuracy of imputation, all of which had genotypes for the high-density panel; only SNPs on the low-density panel were retained with the remaining SNPs to be imputed. The reference population for imputation consisted of 4732 animals born before 2006 also with genotypes on the higher density marker panel. The concordance between the actual and imputed genotypes in the test group of animals did not vary across chromosomes and was on average 95%; the concordance between actual and imputed alleles was, on average, 97% across all SNPs. Genomic predictions were undertaken across a range of production and functional traits for the 764 test group animals using either their real or imputed genotypes. Little or no mean difference in the genomic predictions was evident when comparing direct genomic values (DGVs) using real or imputed genotypes. The average correlation between the DGVs estimated using the real or imputed genotypes for the 15 traits included in the Irish total merit index was 0.97 (range of 0.92 to 0.99), indicating good concordance between proofs from real or imputed genotypes. Results show that a commercially available high-density marker panel can be imputed from a commercially available lower density marker panel, which will also have a lower cost, thereby facilitating a reduction in the cost of genomic selection. Increased available numbers of genotyped and phenotyped animals also has implications for increasing the accuracy of genomic prediction in the entire population and thus genetic gain using genomic selection.  相似文献   

6.
The uptake of genomic selection (GS) by the swine industry is still limited by the costs of genotyping. A feasible alternative to overcome this challenge is to genotype animals using an affordable low-density (LD) single nucleotide polymorphism (SNP) chip panel followed by accurate imputation to a high-density panel. Therefore, the main objective of this study was to screen incremental densities of LD panels in order to systematically identify one that balances the tradeoffs among imputation accuracy, prediction accuracy of genomic estimated breeding values (GEBVs), and genotype density (directly associated with genotyping costs). Genotypes using the Illumina Porcine60K BeadChip were available for 1378 Duroc (DU), 2361 Landrace (LA) and 3192 Yorkshire (YO) pigs. In addition, pseudo-phenotypes (de-regressed estimated breeding values) for five economically important traits were provided for the analysis. The reference population for genotyping imputation consisted of 931 DU, 1631 LA and 2103 YO animals and the remainder individuals were included in the validation population of each breed. A LD panel of 3000 evenly spaced SNPs (LD3K) yielded high imputation accuracy rates: 93.78% (DU), 97.07% (LA) and 97.00% (YO) and high correlations (>0.97) between the predicted GEBVs using the actual 60 K SNP genotypes and the imputed 60 K SNP genotypes for all traits and breeds. The imputation accuracy was influenced by the reference population size as well as the amount of parental genotype information available in the reference population. However, parental genotype information became less important when the LD panel had at least 3000 SNPs. The correlation of the GEBVs directly increased with an increase in imputation accuracy. When genotype information for both parents was available, a panel of 300 SNPs (imputed to 60 K) yielded GEBV predictions highly correlated (⩾0.90) with genomic predictions obtained based on the true 60 K panel, for all traits and breeds. For a small reference population size with no parents on reference population, it is recommended the use of a panel at least as dense as the LD3K and, when there are two parents in the reference population, a panel as small as the LD300 might be a feasible option. These findings are of great importance for the development of LD panels for swine in order to reduce genotyping costs, increase the uptake of GS and, therefore, optimize the profitability of the swine industry.  相似文献   

7.

Background

Although the X chromosome is the second largest bovine chromosome, markers on the X chromosome are not used for genomic prediction in some countries and populations. In this study, we presented a method for computing genomic relationships using X chromosome markers, investigated the accuracy of imputation from a low density (7K) to the 54K SNP (single nucleotide polymorphism) panel, and compared the accuracy of genomic prediction with and without using X chromosome markers.

Methods

The impact of considering X chromosome markers on prediction accuracy was assessed using data from Nordic Holstein bulls and different sets of SNPs: (a) the 54K SNPs for reference and test animals, (b) SNPs imputed from the 7K to the 54K SNP panel for test animals, (c) SNPs imputed from the 7K to the 54K panel for half of the reference animals, and (d) the 7K SNP panel for all animals. Beagle and Findhap were used for imputation. GBLUP (genomic best linear unbiased prediction) models with or without X chromosome markers and with or without a residual polygenic effect were used to predict genomic breeding values for 15 traits.

Results

Averaged over the two imputation datasets, correlation coefficients between imputed and true genotypes for autosomal markers, pseudo-autosomal markers, and X-specific markers were 0.971, 0.831 and 0.935 when using Findhap, and 0.983, 0.856 and 0.937 when using Beagle. Estimated reliabilities of genomic predictions based on the imputed datasets using Findhap or Beagle were very close to those using the real 54K data. Genomic prediction using all markers gave slightly higher reliabilities than predictions without X chromosome markers. Based on our data which included only bulls, using a G matrix that accounted for sex-linked relationships did not improve prediction, compared with a G matrix that did not account for sex-linked relationships. A model that included a polygenic effect did not recover the loss of prediction accuracy from exclusion of X chromosome markers.

Conclusions

The results from this study suggest that markers on the X chromosome contribute to accuracy of genomic predictions and should be used for routine genomic evaluation.  相似文献   

8.
SNP chips are commonly used for genotyping animals in genomic selection but strategies for selecting low-density (LD) SNPs for imputation-mediated genomic selection have not been addressed adequately. The main purpose of the present study was to compare the performance of eight LD (6K) SNP panels, each selected by a different strategy exploiting a combination of three major factors: evenly-spaced SNPs, increased minor allele frequencies, and SNP-trait associations either for single traits independently or for all the three traits jointly. The imputation accuracies from 6K to 80K SNP genotypes were between 96.2 and 98.2%. Genomic prediction accuracies obtained using imputed 80K genotypes were between 0.817 and 0.821 for daughter pregnancy rate, between 0.838 and 0.844 for fat yield, and between 0.850 and 0.863 for milk yield. The two SNP panels optimized on the three major factors had the highest genomic prediction accuracy (0.821–0.863), and these accuracies were very close to those obtained using observed 80K genotypes (0.825–0.868). Further exploration of the underlying relationships showed that genomic prediction accuracies did not respond linearly to imputation accuracies, but were significantly affected by genotype (imputation) errors of SNPs in association with the traits to be predicted. SNPs optimal for map coverage and MAF were favorable for obtaining accurate imputation of genotypes whereas trait-associated SNPs improved genomic prediction accuracies. Thus, optimal LD SNP panels were the ones that combined both strengths. The present results have practical implications on the design of LD SNP chips for imputation-enabled genomic prediction.  相似文献   

9.

Background

The use of whole-genome sequence data can lead to higher accuracy in genome-wide association studies and genomic predictions. However, to benefit from whole-genome sequence data, a large dataset of sequenced individuals is needed. Imputation from SNP panels, such as the Illumina BovineSNP50 BeadChip and Illumina BovineHD BeadChip, to whole-genome sequence data is an attractive and less expensive approach to obtain whole-genome sequence genotypes for a large number of individuals than sequencing all individuals. Our objective was to investigate accuracy of imputation from lower density SNP panels to whole-genome sequence data in a typical dataset for cattle.

Methods

Whole-genome sequence data of chromosome 1 (1737 471 SNPs) for 114 Holstein Friesian bulls were used. Beagle software was used for imputation from the BovineSNP50 (3132 SNPs) and BovineHD (40 492 SNPs) beadchips. Accuracy was calculated as the correlation between observed and imputed genotypes and assessed by five-fold cross-validation. Three scenarios S40, S60 and S80 with respectively 40%, 60%, and 80% of the individuals as reference individuals were investigated.

Results

Mean accuracies of imputation per SNP from the BovineHD panel to sequence data and from the BovineSNP50 panel to sequence data for scenarios S40 and S80 ranged from 0.77 to 0.83 and from 0.37 to 0.46, respectively. Stepwise imputation from the BovineSNP50 to BovineHD panel and then to sequence data for scenario S40 improved accuracy per SNP to 0.65 but it varied considerably between SNPs.

Conclusions

Accuracy of imputation to whole-genome sequence data was generally high for imputation from the BovineHD beadchip, but was low from the BovineSNP50 beadchip. Stepwise imputation from the BovineSNP50 to the BovineHD beadchip and then to sequence data substantially improved accuracy of imputation. SNPs with a low minor allele frequency were more difficult to impute correctly and the reliability of imputation varied more. Linkage disequilibrium between an imputed SNP and the SNP on the lower density panel, minor allele frequency of the imputed SNP and size of the reference group affected imputation reliability.  相似文献   

10.
Availability of high-density single nucleotide polymorphism (SNP) genotyping platforms provided unprecedented opportunities to enhance breeding programmes in livestock, poultry and plant species, and to better understand the genetic basis of complex traits. Using this genomic information, genomic breeding values (GEBVs), which are more accurate than conventional breeding values. The superiority of genomic selection is possible only when high-density SNP panels are used to track genes and QTLs affecting the trait. Unfortunately, even with the continuous decrease in genotyping costs, only a small fraction of the population has been genotyped with these high-density panels. It is often the case that a larger portion of the population is genotyped with low-density and low-cost SNP panels and then imputed to a higher density. Accuracy of SNP genotype imputation tends to be high when minimum requirements are met. Nevertheless, a certain rate of genotype imputation errors is unavoidable. Thus, it is reasonable to assume that the accuracy of GEBVs will be affected by imputation errors; especially, their cumulative effects over time. To evaluate the impact of multi-generational selection on the accuracy of SNP genotypes imputation and the reliability of resulting GEBVs, a simulation was carried out under varying updating of the reference population, distance between the reference and testing sets, and the approach used for the estimation of GEBVs. Using fixed reference populations, imputation accuracy decayed by about 0.5% per generation. In fact, after 25 generations, the accuracy was only 7% lower than the first generation. When the reference population was updated by either 1% or 5% of the top animals in the previous generations, decay of imputation accuracy was substantially reduced. These results indicate that low-density panels are useful, especially when the generational interval between reference and testing population is small. As the generational interval increases, the imputation accuracies decay, although not at an alarming rate. In absence of updating of the reference population, accuracy of GEBVs decays substantially in one or two generations at the rate of 20% to 25% per generation. When the reference population is updated by 1% or 5% every generation, the decay in accuracy was 8% to 11% after seven generations using true and imputed genotypes. These results indicate that imputed genotypes provide a viable alternative, even after several generations, as long the reference and training populations are appropriately updated to reflect the genetic change in the population.  相似文献   

11.

Background

In contrast to currently used single nucleotide polymorphism (SNP) panels, the use of whole-genome sequence data is expected to enable the direct estimation of the effects of causal mutations on a given trait. This could lead to higher reliabilities of genomic predictions compared to those based on SNP genotypes. Also, at each generation of selection, recombination events between a SNP and a mutation can cause decay in reliability of genomic predictions based on markers rather than on the causal variants. Our objective was to investigate the use of imputed whole-genome sequence genotypes versus high-density SNP genotypes on (the persistency of) the reliability of genomic predictions using real cattle data.

Methods

Highly accurate phenotypes based on daughter performance and Illumina BovineHD Beadchip genotypes were available for 5503 Holstein Friesian bulls. The BovineHD genotypes (631,428 SNPs) of each bull were used to impute whole-genome sequence genotypes (12,590,056 SNPs) using the Beagle software. Imputation was done using a multi-breed reference panel of 429 sequenced individuals. Genomic estimated breeding values for three traits were predicted using a Bayesian stochastic search variable selection (BSSVS) model and a genome-enabled best linear unbiased prediction model (GBLUP). Reliabilities of predictions were based on 2087 validation bulls, while the other 3416 bulls were used for training.

Results

Prediction reliabilities ranged from 0.37 to 0.52. BSSVS performed better than GBLUP in all cases. Reliabilities of genomic predictions were slightly lower with imputed sequence data than with BovineHD chip data. Also, the reliabilities tended to be lower for both sequence data and BovineHD chip data when relationships between training animals were low. No increase in persistency of prediction reliability using imputed sequence data was observed.

Conclusions

Compared to BovineHD genotype data, using imputed sequence data for genomic prediction produced no advantage. To investigate the putative advantage of genomic prediction using (imputed) sequence data, a training set with a larger number of individuals that are distantly related to each other and genomic prediction models that incorporate biological information on the SNPs or that apply stricter SNP pre-selection should be considered.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0149-x) contains supplementary material, which is available to authorized users.  相似文献   

12.
Accurate genomic analyses are predicated on access to a large quantity of accurately genotyped and phenotyped animals. Because the cost of genotyping is often less than the cost of phenotyping, interest is increasing in generating genotypes for phenotyped animals. In some instances this may imply the requirement to genotype older animals with greater phenotypic information content. Biological material for these older informative animals may, however, no longer exist. The objective of the present study was to quantify the ability to impute 11 129 single nucleotide polymorphism (SNP) genotypes of non-genotyped animals (in this instance sires) from the genotypes of their progeny with or without including the genotypes of the progenys’ dams (i.e. mates of the sire to be imputed). The impact on the accuracy of genotype imputation by including more progeny (and their dams’) genotypes in the imputation reference population was also quantified. When genotypes of the dams were not available, genotypes of 41 sires with at least 15 genotyped progeny were used for the imputation; when genotypes of the dams were available, genotypes of 21 sires with at least 10 genotyped progeny were used for the imputation. Imputation was undertaken exploiting family and population level information. The mean and variability in the proportion of genotypes per individual that could not be imputed reduced as the number of progeny genotypes used per individual increased. Little improvement in the proportion of genotypes that could not be imputed was achieved once genotypes of seven progeny and their dams were used or genotypes of 11 progeny without their respective dam’s genotypes were used. Mean imputation accuracy per individual (depicted by both concordance rates and correlation between true and imputed) increased with increasing progeny group size. Moreover, the range in mean imputation accuracy per individual reduced as more progeny genotypes were used in the imputation. If the genotype of the mate of the sire was also used, high accuracy of imputation (mean genotype concordance rate per individual of 0.988), with little additional benefit thereafter, was achieved with seven genotyped progeny. In the absence of genotypes on the dam, similar imputation accuracy could not be achieved even using genotypes on up to 15 progeny. Results therefore suggest, at least for the SNP density used in the present study, that it is possible to accurately impute the genotypes of a non-genotyped parent from the genotypes of its progeny and there is a benefit of also including the genotype of the sire’s mate (i.e. dam of the progeny).  相似文献   

13.
Common variants explain little of the variance of most common disease,prompting large-scale sequencing studies to understand the contribution of rare variants to these diseases.Imputation of rare variants from genome-wide genotypic arrays offers a cost-efficient strategy to achieve necessary sample sizes required for adequate statistical power.To estimate the performance of imputation of rare variants,we imputed 153 individuals,each of whom was genotyped on 3 different genotype arrays including 317k,610k and 1 million single nucleotide polymorphisms(SNPs),to two different reference panels:HapMap2 and 1000 Genomes pilot March 2010 release (lKGpilot) by using IMPUTE version 2.We found that more than 94%and 84%of all SNPs yield acceptable accuracy(info > 0.4) in HapMap2 and lKGpilot-based imputation,respectively.For rare variants(minor allele frequency(MAF) <5%),the proportion of wellimputed SNPs increased as the MAF increased from 0.3%to 5%across all 3 genome-wide association study(GWAS) datasets.The proportion of well-imputed SNPs was 69%,60%and 49%for SNPs with a MAF from 0.3%to 5%for 1M,610k and 317k,respectively. None of the very rare variants(MAF < 0.3%) were well imputed.We conclude that the imputation accuracy of rare variants increases with higher density of genome-wide genotyping arrays when the size of the reference panel is small.Variants with lower MAF are more difficult to impute.These findings have important implications in the design and replication of large-scale sequencing studies.  相似文献   

14.
Related individuals share potentially long chromosome segments that trace to a common ancestor. We describe a phasing algorithm (ChromoPhase) that utilizes this characteristic of finite populations to phase large sections of a chromosome. In addition to phasing, our method imputes missing genotypes in individuals genotyped at lower marker density when more densely genotyped relatives are available. ChromoPhase uses a pedigree to collect an individual's (the proband) surrogate parents and offspring and uses genotypic similarity to identify its genomic surrogates. The algorithm then cycles through the relatives and genomic surrogates one at a time to find shared chromosome segments. Once a segment has been identified, any missing information in the proband is filled in with information from the relative. We tested ChromoPhase in a simulated population consisting of 400 individuals at a marker density of 1500/M, which is approximately equivalent to a 50K bovine single nucleotide polymorphism chip. In simulated data, 99.9% loci were correctly phased and, when imputing from 100 to 1500 markers, more than 87% of missing genotypes were correctly imputed. Performance increased when the number of generations available in the pedigree increased, but was reduced when the sparse genotype contained fewer loci. However, in simulated data, ChromoPhase correctly imputed at least 12% more genotypes than fastPHASE, depending on sparse marker density. We also tested the algorithm in a real Holstein cattle data set to impute 50K genotypes in animals with a sparse 3K genotype. In these data 92% of genotypes were correctly imputed in animals with a genotyped sire. We evaluated the accuracy of genomic predictions with the dense, sparse, and imputed simulated data sets and show that the reduction in genomic evaluation accuracy is modest even with imperfectly imputed genotype data. Our results demonstrate that imputation of missing genotypes, and potentially full genome sequence, using long-range phasing is feasible.  相似文献   

15.

Background

The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used.

Methods

Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content.

Results

In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip.

Conclusions

Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available.  相似文献   

16.
Genomic prediction utilizing causal variants could increase selection accuracy above that achieved with SNPs genotyped by currently available arrays used for genomic selection. A number of variants detected from sequencing influential sires are likely to be causal, but noticeable improvements in prediction accuracy using imputed sequence variant genotypes have not been reported. Improvement in accuracy of predicted breeding values may be limited by the accuracy of imputed sequence variants. Using genotypes of SNPs on a high‐density array and non‐synonymous SNPs detected in sequence from influential sires of a multibreed population, results of this examination suggest that linkage disequilibrium between non‐synonymous and array SNPs may be insufficient for accurate imputation from the array to sequence. In contrast to 75% of array SNPs being strongly correlated to another SNP on the array, less than 25% of the non‐synonymous SNPs were strongly correlated to an array SNP. When correlations between non‐synonymous and array SNPs were strong, distances between the SNPs were greater than separation that might be expected based on linkage disequilibrium decay. Consistently near‐perfect whole‐genome linkage disequilibrium between the full array and each non‐synonymous SNP within the sequenced bulls suggests that whole‐genome approaches to infer sequence variants might be more accurate than imputation based on local haplotypes. Opportunity for strong linkage disequilibrium between sequence and array SNPs may be limited by discrepancies in allele frequency distributions, so investigating alternate genotyping approaches and panels providing greater chances of frequency‐matched SNPs strongly correlated to sequence variants is also warranted. Genotypes used for this study are available from https://www.animalgenome.org/repository/pub/ ;USDA2017.0519/.  相似文献   

17.
Joint genomic prediction (GP) is an attractive method to improve the accuracy of GP by combining information from multiple populations. However, many factors can negatively influence the accuracy of joint GP, such as differences in linkage disequilibrium phasing between single nucleotide polymorphisms (SNPs) and causal variants, minor allele frequencies and causal variants’ effect sizes across different populations. The objective of this study was to investigate whether the imputed high-density genotype data can improve the accuracy of joint GP using genomic best linear unbiased prediction (GBLUP), single-step GBLUP (ssGBLUP), multi-trait GBLUP (MT-GBLUP) and GBLUP based on genomic relationship matrix considering heterogenous minor allele frequencies across different populations (wGBLUP). Three traits, including days taken to reach slaughter weight, backfat thickness and loin muscle area, were measured on 67 276 Large White pigs from two different populations, for which 3334 were genotyped by SNP array. The results showed that a combined population could substantially improve the accuracy of GP compared with a single-population GP, especially for the population with a smaller size. The imputed SNP data had no effect for single population GP but helped to yield higher accuracy than the medium-density array data for joint GP. Of the four methods, ssGLBUP performed the best, but the advantage of ssGBLUP decreased as more individuals were genotyped. In some cases, MT-GBLUP and wGBLUP performed better than GBLUP. In conclusion, our results confirmed that joint GP could be beneficial from imputed high-density genotype data, and the wGBLUP and MT-GBLUP methods are promising for joint GP in pig breeding.  相似文献   

18.
Imputation of missing genotypes, in particular from low density to high density, is an important issue in genomic selection and genome‐wide association studies. Given the marker densities, the most important factors affecting imputation accuracy are the size of the reference population and the relationship between individuals in the reference (genotyped with high‐density panel) and study (genotyped with low‐density panel) populations. In this study, we investigated the imputation accuracies when the reference population (genotyped with Illumina BovineSNP50 SNP panel) contained sires, halfsibs, or both sires and halfsibs of the individuals in the study population (genotyped with Illumina BovineLD SNP panel) using three imputation programs (fimpute v2.2, findhap v2, and beagle v3.3.2). Two criteria, correlation between true and imputed genotypes and missing rate after imputation, were used to evaluate the performance of the three programs in different scenarios. Our results showed that fimpute performed the best in all cases, with correlations from 0.921 to 0.978 when imputing from sires to their daughters or between halfsibs. In general, the accuracies of imputing between halfsibs or from sires to their daughters were higher than were those imputing between non‐halfsibs or from sires to non‐daughters. Including both sires and halfsibs in the reference population did not improve the imputation performance in comparison with when only including halfsibs in the reference population for all the three programs.  相似文献   

19.
The dog is a valuable model species for the genetic analysis of complex traits, and the use of genotype imputation in dogs will be an important tool for future studies. It is of particular interest to analyse the effect of factors like single nucleotide polymorphism (SNP) density of genotyping arrays and relatedness between dogs on imputation accuracy due to the acknowledged genetic and pedigree structure of dog breeds. In this study, we simulated different genotyping strategies based on data from 1179 Labrador Retriever dogs. The study involved 5826 SNPs on chromosome 1 representing the high density (HighD) array; the low‐density (LowD) array was simulated by masking different proportions of SNPs on the HighD array. The correlations between true and imputed genotypes for a realistic masking level of 87.5% ranged from 0.92 to 0.97, depending on the scenario used. A correlation of 0.92 was found for a likely scenario (10% of dogs genotyped using HighD, 87.5% of HighD SNPs masked in the LowD array), which indicates that genotype imputation in Labrador Retrievers can be a valuable tool to reduce experimental costs while increasing sample size. Furthermore, we show that genotype imputation can be performed successfully even without pedigree information and with low relatedness between dogs in the reference and validation sets. Based on these results, the impact of genotype imputation was evaluated in a genome‐wide association analysis and genomic prediction in Labrador Retrievers.  相似文献   

20.

Background

Imputation of genotypes for ungenotyped individuals could enable the use of valuable phenotypes created before the genomic era in analyses that require genotypes. The objective of this study was to investigate the accuracy of imputation of non-genotyped individuals using genotype information from relatives.

Methods

Genotypes were simulated for all individuals in the pedigree of a real (historical) dataset of phenotyped dairy cows and with part of the pedigree genotyped. The software AlphaImpute was used for imputation in its standard settings but also without phasing, i.e. using basic inheritance rules and segregation analysis only. Different scenarios were evaluated i.e.: (1) the real data scenario, (2) addition of genotypes of sires and maternal grandsires of the ungenotyped individuals, and (3) addition of one, two, or four genotyped offspring of the ungenotyped individuals to the reference population.

Results

The imputation accuracy using AlphaImpute in its standard settings was lower than without phasing. Including genotypes of sires and maternal grandsires in the reference population improved imputation accuracy, i.e. the correlation of the true genotypes with the imputed genotype dosages, corrected for mean gene content, across all animals increased from 0.47 (real situation) to 0.60. Including one, two and four genotyped offspring increased the accuracy of imputation across all animals from 0.57 (no offspring) to 0.73, 0.82, and 0.92, respectively.

Conclusions

At present, the use of basic inheritance rules and segregation analysis appears to be the best imputation method for ungenotyped individuals. Comparison of our empirical animal-specific imputation accuracies to predictions based on selection index theory suggested that not correcting for mean gene content considerably overestimates the true accuracy. Imputation of ungenotyped individuals can help to include valuable phenotypes for genome-wide association studies or for genomic prediction, especially when the ungenotyped individuals have genotyped offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号