首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies by our group showed that infection of human and rodent cells by human adenovirus type 5 (Ad5) results in the induction of p53-independent apoptosis and cell death that are dependent upon transactivation of early region 4 (E4). To identify which E4 products are involved, studies were conducted with p53-deficient human SAOS-2 cells infected with various Ad5 E4 mutants. An E4orf6-deficient mutant was defective in cell killing, whereas another that expressed only E4orf6 and E4orf4 killed like wild-type virus, suggesting that E4orf6 may be responsible for cytotoxicity; however, a mutant expressing only E4orf4 induced high levels of cell death, indicating that this E4 product may also be able to induce cytotoxicity. To define the E4 cell death-inducing functions more precisely, cDNAs encoding individual E4 products were introduced into cells by DNA transfection in the absence of other Ad5 proteins. In cotransfections with a cDNA encoding firefly luciferase, enzymatic activity was high in all cases except with E4orf4, where luciferase levels were less than 20% of those in controls. In addition, drug selection of several cell types following transfection with retroviral vector DNA encoding individual E4 products as well as puromycin resistance yielded a large number of cell colonies except when E4orf4 was expressed. These data demonstrated that E4orf4 is the only E4 product capable of independent cell killing. Cell death induced by E4orf4 was due to apoptosis, as evidenced by 4′,6-diamidino-2-phenylindole (DAPI) staining of cell nuclei in E4orf4-expressing cells. Thus, although E4orf6 may play some role, these results suggested that E4orf4 may be the major E4 product responsible for induction of p53-independent apoptosis.  相似文献   

2.
The effects of cyclic AMP (cAMP) on cell proliferation are cell type specific. Although the growth-inhibitory effects of cAMP have been well studied, much less is known regarding how cAMP stimulates proliferation. We report that cAMP stimulates proliferation through both protein kinase A (PKA)-dependent and PKA-independent signaling pathways and that phosphatidylinositol 3-kinase (PI3K) is required for cAMP-stimulated mitogenesis. In cells where cAMP is a mitogen, cAMP-elevating agents stimulate membrane ruffling, Akt phosphorylation, and p70 ribosomal S6 protein kinase (p70s6k) activity. cAMP effects on ruffle formation and Akt were PKA independent but sensitive to wortmannin. In contrast, cAMP-stimulated p70s6k activity was repressed by PKA inhibitors but not by wortmannin or microinjection of the N-terminal SH2 domain of the p85 regulatory subunit of PI3K, indicating that p70s6k and Akt can be regulated independently. Microinjection of highly specific inhibitors of PI3K or Rac1, or treatment with the p70s6k inhibitor rapamycin, impaired cAMP-stimulated DNA synthesis, demonstrating that PKA-dependent and -independent pathways contribute to cAMP-mediated mitogenesis. Direct elevation of PI3K activity through microinjection of an antibody that stimulates PI3K activity or stable expression of membrane-localized p110 was sufficient to confer hormone-independent DNA synthesis when accompanied by elevations in p70s6k activity. These findings indicate that multiple pathways contribute to cAMP-stimulated mitogenesis, only some of which are PKA dependent. Furthermore, they demonstrate that the ability of cAMP to stimulate both p70s6k- and PI3K-dependent pathways is an important facet of cAMP-regulated cell cycle progression.  相似文献   

3.
4.
In transformed cells, the adenovirus E4orf4 death factor works in part by inducing a Src-mediated cytoplasmic apoptotic signal leading to caspase-independent membrane blebbing and cell death. Here we show that Src-family kinases modulate E4orf4 phosphorylation on tyrosine residues. Mutation of tyrosines 26, 42, and 59 to phenylalanines inhibited Src-induced phosphorylation of E4orf4 in vivo and in vitro but had no effect on the molecular association of E4orf4 with Src. However, in contrast to wild-type E4orf4, the nonphosphorylatable E4orf4 mutant was unable to modulate Src-dependent phosphorylation and was deficient in recruiting a subset of tyrosine-phosphorylated proteins. Indeed, the Src substrates cortactin and p62dok were found to associate with wild-type E4orf4 but not with the nonphosphorylatable E4orf4. Importantly, the nonphosphorylatable mutant E4orf4 was preferentially distributed in the cell nucleus, was unable to induce membrane blebbing, and had a highly impaired killing activity. Conversely, an activated form of E4orf4 was obtained by mutation of tyrosine 42 to glutamic acid. This pseudophosphorylated mutant E4orf4 was enriched in the cytoplasm and plasma membrane, showed increased binding to phosphotyrosine-containing proteins, and induced a dramatic blebbing phenotype associated with increased cell death. Altogether, our findings strongly suggest that Src-mediated phosphorylation of adenovirus type 2 E4orf4 is critical to promoting its cytoplasmic and membrane localization and is required for the transduction of E4orf4-Src-dependent induction of membrane blebbing. We propose that E4orf4 acts in part by uncoupling Src-dependent signals to drive the formation of a signaling complex that triggers a cytoplasmic death signal.  相似文献   

5.
Human adenovirus E4orf4 protein is toxic in human tumor cells. Its interaction with the Bα subunit of protein phosphatase 2A (PP2A) is critical for cell killing; however, the effect of E4orf4 binding is not known. Bα is one of several mammalian B-type regulatory subunits that form PP2A holoenzymes with A and C subunits. Here we show that E4orf4 protein interacts uniquely with B55 family subunits and that cell killing increases with the level of E4orf4 expression. Evidence suggesting that Bα-specific PP2A activity, measured in vitro against phosphoprotein substrates, is reduced by E4orf4 binding was obtained, and two potential B55-specific PP2A substrates, 4E-BP1 and p70S6K, were seen to be hypophosphorylated in vivo following expression of E4orf4. Furthermore, treatment of cells with low levels of the phosphatase inhibitor okadaic acid or coexpression of the PP2A inhibitor I1PP2A enhanced E4orf4-induced cell killing and G2/M arrest significantly. These results suggested that E4orf4 toxicity results from the inhibition of B55-specific PP2A holoenzymes, an idea that was strengthened by an observed growth arrest resulting from treatment of H1299 cells with Bα-specific RNA interference. We believe that E4orf4 induces growth arrest resulting in cell death by reducing the global level of B55-specific PP2A activity, thus preventing the dephosphorylation of B55-specific PP2A substrates, including those involved in cell cycle progression.Our research group and others have shown that the 114-residue product of early region E4 of human adenoviruses, termed E4orf4, induces p53-independent cell death in human tumor cells (24, 25, 34-36, 55) and in Saccharomyces cerevisiae (23, 53). E4orf4 protein, which shares no obvious homology with other viral or cellular products, kills a wide range of human cancer cells but is believed to have reduced activity against normal human primary cells (6, 55, 56). Although in some cases E4orf4-expressing cells exhibit characteristics typical of apoptosis, including the presence of irregularly shaped and shrunken nuclei, cytoplasmic vacuolization, and membrane blebbing (24, 25, 50, 55), cell death may more typically be independent of caspase activation (24, 25, 30, 32, 50). With H1299 human non-small-cell lung carcinoma cells, death is characterized by rapid cell rounding, enlargement, release from the surface of culture plates, cell cycle arrest in G2/M and possibly G1, and eventually, after an extended period, loss of membrane integrity (30). Both cytoplasmic and nuclear pathways have been observed, the former involving interactions with c-Src family kinases, activation of calpain, and remodeling of the actin cytoskeleton (7, 24, 50, 51, 58). Little is known about the nuclear pathway, which may represent the predominant death-inducing process. Our current evidence suggests that H1299 cells die following prolonged irreversible cell cycle arrest leading to mitotic catastrophe and death by a necrosis-like process (30).E4orf4 is known to associate with the Bα regulatory subunit of protein phosphatase 2A (PP2A) (22, 34), and this interaction appears to be necessary for the majority of E4orf4 toxicity in both yeast (23, 53) and human tumor cells (34, 56). PP2A is an abundant serine-threonine phosphatase involved in regulation of metabolism, splicing, translation, morphogenesis, development, and cell cycle progression (15, 19, 27, 43, 59). PP2A holoenzymes exist as multiple heterotrimeric complexes composed of a catalytic C subunit, an A subunit that functions as a scaffold, and a B-type regulatory subunit. Two forms each of the A and C subunits exist in mammalian cells; however, more than 20 B-type subunits have been identified in three unique classes (B/B55, B′/B56, B″/PR72), plus striatin/SG2NA (sometimes called B‴) (10, 19, 26). Although one group has suggested that E4orf4 protein interacts with one or more members of the B′/B56 class (57), it is generally accepted that interaction with the Bα/B55 subunit (Cdc55 in yeast) is important for induction of cell death in both human tumor cells and yeast (53, 57). Interestingly, a recent report has also suggested that in yeast, growth suppression induced by E4orf4 is mediated only in part by the catalytic C subunit of PP2A (31).In the present report, we show that E4orf4 protein interacts uniquely with members of the B55 class of PP2A B-type subunits, and at sufficient concentrations, it appears to become toxic by reducing dephosphorylation of substrates of B55-containing PP2A holoenzymes. As cell death is preceded by cell cycle arrest, we believe that key substrates may include proteins required for cell cycle progression.  相似文献   

6.
The human adenovirus type 5 (Ad5) E4orf4 product has been studied extensively although in most cases as expressed from vectors in the absence of other viral products. Thus, relatively little is known about its role in the context of an adenovirus infection. Although considerable earlier work had indicated that the E4orf4 protein is not essential for replication, a recent study using dl359, an Ad5 mutant believed to produce a nonfunctional E4orf4 protein, suggested that E4orf4 is essential for virus growth in primary small-airway epithelial cells (C. O'Shea, et al., EMBO J. 24:1211-1221, 2005). Hence, to examine further the role of E4orf4 during virus infection, we generated for the first time a set of E4orf4 virus mutants in a common Ad5 genetic background. Such mutant viruses included those that express E4orf4 proteins containing various individual point mutations, those defective entirely in E4orf4 expression, and a mutant expressing wild-type E4orf4 fused to the green fluorescent protein. E4orf4 protein was found to localize primarily in nuclear structures shown to be viral replication centers, in nucleoli, and in perinuclear bodies. Importantly, E4orf4 was shown not to be essential for virus growth in either human tumor or primary cells, at least in tissue culture. Unlike E4orf4-null virus, mutant dl359 appeared to exhibit a gain-of-function phenotype that impairs virus growth. The dl359 E4orf4 protein, which contains a large in-frame internal deletion, clustered in aggregates enriched in Hsp70 and proteasome components. In addition, the late viral mRNAs produced by dl359 accumulated abnormally in a nuclear punctate pattern. Altogether, our results indicate that E4orf4 protein is not essential for virus growth in culture and that expression of the dl359 E4orf4 product interferes with viral replication, presumably through interactions with structures in the nucleus.  相似文献   

7.
Transforming Potential of the Adenovirus Type 5 E4orf3 Protein   总被引:2,自引:4,他引:2       下载免费PDF全文
Previous observations that the adenovirus type 5 (Ad5) E4orf6 and E4orf3 gene products have redundant effects in viral lytic infection together with the recent findings that E4orf6 possesses transforming potential prompted us to investigate the effect of E4orf3 expression on the transformation of primary rat cells in combination with adenovirus E1 oncogene products. Our results demonstrate for the first time that E4orf3 can cooperate with adenovirus E1A and E1A plus E1B proteins to transform primary baby rat kidney cells, acting synergistically with E4orf6 in the presence of E1B gene products. Transformed rat cells expressing E4orf3 exhibit morphological alterations, higher growth rates and saturation densities, and increased tumorigenicity compared with transformants expressing E1 proteins only. Consistent with previous results for adenovirus-infected cells, the E4orf3 protein is immunologically restricted to discrete nuclear structures known as PML oncogenic domains (PODs) in transformed rat cells. As opposed to E4orf6, the ability of E4orf3 to promote oncogenic cell growth is probably not linked to a modulation of p53 functions and stability. Instead, our results indicate that the transforming activities of E4orf3 are due to combinatorial effects that involve the binding to the adenovirus 55-kDa E1B protein and the colocalization with PODs independent from interactions with the PML gene product. These data fit well with a model in which the reorganization of PODs may trigger a cascade of processes that cause uncontrolled cell proliferation and neoplastic growth. In sum, our results provide strong evidence for the idea that interactions with PODs by viral proteins are linked to oncogenic transformation.  相似文献   

8.
Adenovirus early region 4 open reading frame 4 (E4orf4) protein has been reported to induce p53-independent, protein phosphatase 2A (PP2A)-dependent apoptosis in transformed mammalian cells. In this report, we show that E4orf4 induces an irreversible growth arrest in Saccharomyces cerevisiae at the G2/M phase of the cell cycle. Growth inhibition requires the presence of yeast PP2A-Cdc55, and is accompanied by accumulation of reactive oxygen species. E4orf4 expression is synthetically lethal with mutants defective in mitosis, including Cdc28/Cdk1 and anaphase-promoting complex/cyclosome (APC/C) mutants. Although APC/C activity is inhibited in the presence of E4orf4, Cdc28/Cdk1 is activated and partially counteracts the E4orf4-induced cell cycle arrest. The E4orf4-PP2A complex physically interacts with the APC/C, suggesting that E4orf4 functions by directly targeting PP2A to the APC/C, thereby leading to its inactivation. Finally, we show that E4orf4 can induce G2/M arrest in mammalian cells before apoptosis, indicating that E4orf4-induced events in yeast and mammalian cells are highly conserved.  相似文献   

9.
10.
Adenoviruses bearing lesions in the E1B 55-kDa protein (E1B 55-kDa) gene are restricted by the cell cycle such that mutant virus growth is most impaired in cells infected during G(1) and least restricted in cells infected during S phase (F. D. Goodrum and D. A. Ornelles, J. Virol. 71:548-561, 1997). A similar defect is reported here for E4 orf6-mutant viruses. An E4 orf3-mutant virus was not restricted for growth by the cell cycle. However, orf3 was required for enhanced growth of an E4 orf6-mutant virus in cells infected during S phase. The cell cycle restriction may be linked to virus-mediated mRNA transport because both E1B 55-kDa- and E4 orf6-mutant viruses are defective at regulating mRNA transport at late times of infection. Accordingly, the cytoplasmic-to-nuclear ratio of late viral mRNA was reduced in G(1) cells infected with the mutant viruses compared to that in G(1) cells infected with the wild-type virus. By contrast, this ratio was equivalent among cells infected during S phase with the wild-type or mutant viruses. Furthermore, cells infected during S phase with the E1B 55-kDa- or E4 orf6-mutant viruses synthesized more late viral protein than did cells infected during G(1). However, the total amount of cytoplasmic late viral mRNA was greater in cells infected during G(1) than in cells infected during S phase with either the wild-type or mutant viruses, indicating that enhanced transport of viral mRNA in cells infected during S phase cannot account for the difference in yields in cells infected during S phase and in cells infected during G(1). Thus, additional factors affect the cell cycle restriction. These results indicate that the E4 orf6 and orf3 proteins, in addition to the E1B 55-kDa protein, may cooperate to promote cell cycle-independent adenovirus growth.  相似文献   

11.
The adenovirus E4orf4 protein expressed at high levels kills cancer cells but not normal human primary cells. Previous studies suggested that disruption of processes that regulate mitosis may underlie E4orf4 toxicity. Here we have used live imaging to show that E4orf4 induces a slowed defective transit through mitosis, exhibiting a delay or often failure in cytokinesis that may account for an accumulation of G1 tetraploids in the population of dying E4orf4-expressing cells.  相似文献   

12.
腺病毒E4orf4蛋白由腺病毒早期第4转录区第4开放读码框编码,为一种多功能调节蛋白质,其活性包括下调早期病毒基因表达和下调影响病毒复制的细胞基因表达,调控病毒基因的选择性转录后剪切以影响病毒感染进程等。当E4orf4脱离病毒环境单独表达时,可诱导不依赖p53和胱天蛋白酶途径的癌细胞特异性细胞死亡,而不影响原代细胞的正常生长。这表明E4orf4对癌细胞有特异性的杀伤作用。本文主要介绍了:(1)E4orf4主要蛋白质伴侣(蛋白磷酸酶2A和Src家族激酶)对E4orf4细胞杀伤作用的贡献;(2)E4orf4诱导的细胞死亡独特模式的基本机制及其特点;(3)近年来利用E4orf4治疗癌症的研究。  相似文献   

13.
The DNA damage response (DDR) is a conglomerate of pathways designed to detect DNA damage and signal its presence to cell cycle checkpoints and to the repair machinery, allowing the cell to pause and mend the damage, or if the damage is too severe, to trigger apoptosis or senescence. Various DDR branches are regulated by kinases of the phosphatidylinositol 3-kinase-like protein kinase family, including ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). Replication intermediates and linear double-stranded genomes of DNA viruses are perceived by the cell as DNA damage and activate the DDR. If allowed to operate, the DDR will stimulate ligation of viral genomes and will inhibit virus replication. To prevent this outcome, many DNA viruses evolved ways to limit the DDR. As part of its attack on the DDR, adenovirus utilizes various viral proteins to cause degradation of DDR proteins and to sequester the MRN damage sensor outside virus replication centers. Here we show that adenovirus evolved yet another novel mechanism to inhibit the DDR. The E4orf4 protein, together with its cellular partner PP2A, reduces phosphorylation of ATM and ATR substrates in virus-infected cells and in cells treated with DNA damaging drugs, and causes accumulation of damaged DNA in the drug-treated cells. ATM and ATR are not mutually required for inhibition of their signaling pathways by E4orf4. ATM and ATR deficiency as well as E4orf4 expression enhance infection efficiency. Furthermore, E4orf4, previously reported to induce cancer-specific cell death when expressed alone, sensitizes cells to killing by sub-lethal concentrations of DNA damaging drugs, likely because it inhibits DNA damage repair. These findings provide one explanation for the cancer-specificity of E4orf4-induced cell death as many cancers have DDR deficiencies leading to increased reliance on the remaining intact DDR pathways and to enhanced susceptibility to DDR inhibitors such as E4orf4. Thus DDR inhibition by E4orf4 contributes both to the efficiency of adenovirus replication and to the ability of E4orf4 to kill cancer cells.  相似文献   

14.
Functional inactivation of gene expression in mammalian cells is crucial for the study of the contribution of a protein of interest to various pathways1,2. However, conditional knockdown of gene expression is required in cases when constitutive knockdown is not tolerated by cells for a long period of time3-5. Here we describe a protocol for preparation of cell lines allowing conditional knockdown of subunits of the ACF chromatin remodeling factor. These cell lines facilitate the determination of the contribution of ACF to induction of cell death by the adenovirus E4orf4 protein6. Sequences encoding short hairpin RNAs for the Acf1 and SNF2h subunits of the ACF chromatin remodeling factor were cloned next to a doxycycline-inducible promoter in a plasmid also containing a gene for the neomycin resistance gene. Neomycin-resistant cell clones were selected in the presence of G418 and isolated. The resulting cell lines were induced by doxycycline treatment, and once Acf1 or SNF2h expression levels were reduced, the cells were transfected with a plasmid encoding E4orf4 or an empty vector. To confirm the specific effect of the shRNA constructs, Acf1 or SNF2h protein levels were restored to WT levels by cotransfection with a plasmid expressing Acf1 or SNF2h which were rendered resistant to the shRNA by introduction of silent mutations. The ability of E4orf4 to induce cell death in the various samples was determined by a DAPI assay, in which the frequency of appearance of nuclei with apoptotic morphologies in the transfected cell population was measured7-9.The protocol described here can be utilized for determination of the functional contribution of various proteins to induction of cell death by their protein partners in cases when constitutive knockdown may be cell lethal.  相似文献   

15.
16.
The adenovirus E4 open-reading-frame 4 (E4orf4) protein regulates the progression of viral infection and when expressed individually it induces non-classical apoptosis in transformed cells. Here we show that E4orf4 associates with the ATP-dependent chromatin-remodeling factor ACF that consists of a sucrose non fermenting-2h (SNF2h) ATPase and an Acf1 regulatory subunit. Furthermore, E4orf4 targets protein phosphatase 2A (PP2A) to this complex and to chromatin. Obstruction of SNF2h activity inhibits E4orf4-induced cell death, whereas knockdown of Acf1 results in enhanced E4orf4-induced toxicity in both mammalian and yeast cells, and Acf1 overexpression inhibits E4orf4's ability to downregulate early adenovirus gene expression in the context of viral infection. Knockdown of the Acf1 homolog, WSTF, inhibits E4orf4-induced cell death. Based on these results we suggest that the E4orf4-PP2A complex inhibits ACF and facilitates enhanced chromatin-remodeling activities of other SNF2h-containing complexes, such as WSTF-SNF2h. The resulting switch in chromatin remodeling determines life versus death decisions and contributes to E4orf4 functions during adenovirus infection.  相似文献   

17.
The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic alpha-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic alpha-helix were analyzed. Two of the six arginine residues within the alpha-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic alpha-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection.  相似文献   

18.
19.
Virus infections have dramatic effects on structural and morphological characteristics of the host cell. The gene product of open reading frame 3 in the early region 4 (E4orf3) of adenovirus serotype 5 (Ad5) is involved in efficient replication and late protein synthesis. During infection with adenovirus mutants lacking the E4 region, the viral genomic DNA is joined into concatemers by cellular DNA repair factors, and this requires the Mre11/Rad50/Nbs1 complex. Concatemer formation can be prevented by the E4orf3 protein, which causes the cellular redistribution of the Mre11 complex. Here we show that E4orf3 colocalizes with components of the Mre11 complex in nuclear tracks and also in large cytoplasmic accumulations. Rearrangement of Mre11 and Rad50 by Ad5 E4orf3 is not dependent on interactions with Nbs1 or promyelocytic leukemia protein nuclear bodies. Late in infection the cytoplasmic inclusions appear as a distinct juxtanuclear accumulation at the centrosome and this requires an intact microtubule cytoskeleton. The large cytoplasmic accumulations meet the criteria defined for aggresomes, including gamma-tubulin colocalization and formation of a surrounding vimentin cage. E4orf3 also appears to alter the solubility of the cellular Mre11 complex. These data suggest that E4orf3 can target the Mre11 complex to an aggresome and may explain how the cellular repair complex is inactivated during adenovirus infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号