首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pasture legumes Lotus uliginosus (Schk.) and Lotus corniculatus (L.), known to differ in their tolerance to flooding, were inoculated with Rhizobium loti and flooded for 60 d while subjected to two levels of dissolved pO2: 0.241 and 0.094 mol ml-1. L. uliginosus showed significantly greater growth (shoot and root) and N2 fixation under both pO2s, compared to L. corniculatus, although growth and N2 fixation by L. corniculatus was not affected by the low pO2. Surprisingly, in L. uliginosus., growth, nodulation and N2 fixation were all increased by low pO2 while nodulation of L. corniculatus where low pO2 plants showed a significant increase over that of the higher pO2 plants while L. uliginosus plants showed a decline. Root porosity of L. uliginosus doubled in the low pO2-treatment from a mean of 14.5% in high pO2 roots to 28.5%, whereas that of L. corniculatus was relatively unaffected by pO2, being 7% and 9% for high and low pO2 plants, respectively. The structure of nodules differed little between species and treatments, although nodules/nodulated roots from the L. uliginosus plants had particularly profuse lenticels and aerenchyma. However, L. corniculatus nodules, especially those grown in the lower pO2 showed signs of early senescence with vacuolation of infected cells and green coloration when cut open. Leghaemoglobin (Lb) concentrations in nodules from both species were unaffected by low pO2, although that of L. corniculatus nodules, regardless of pO2, was significantly greater than L. uliginosus. Concentrations of the intercellular glycoprotein recognized by the monoclonal antibody MAC265 were significantly reduced in nodules from the low pO2 treatment in both species. Immunogold labelling showed that the MAC265 antigen was localized primarily within intercellular spaces within nodule cortices from both Lotus species. A marked decrease in deposition of the MAC265 antigen within the cortices of L. uliginosus nodules grown in the lower pO2, is discussed in terms of the relative abilities of the two Lotus spp. to maintain an O2 supply to the N2-fixing bacteroids within submerged nodules.Keywords: Lotus uliginosus, Lotus corniculatus, N2 fixation, flooding, oxygen.   相似文献   

2.
Desmodium spp. are leguminous plants belonging to the tribe Desmodieae of the subfamily Papilionoideae. They are widely distributed in temperated and subtropical regions and are used as forage plants, for biological control, and in traditional folk medicine. The genus includes pioneer species that resist the xerothermic environment and grow in arid, barren sites. Desmodium species that form nitrogen-fixing symbiosis with rhizobia play an important role in sustainable agriculture. In Argentina, 23 native species of this genus have been found, including Desmodium incanum. In this study, a total of 64 D. incanum-nodulating rhizobia were obtained from root nodules of four Argentinean plant populations. Rhizobia showed different abiotic-stress tolerances and a remarkable genetic diversity using PCR fingerprinting, with more than 30 different amplification profiles. None of the isolates were found at more than one site, thus indicating a high level of rhizobial diversity associated with D. incanum in Argentinean soils. In selected isolates, 16S rDNA sequencing and whole-cell extract MALDI TOF analysis revealed the presence of isolates related to Bradyrhizobium elkanii, Bradyrhizobium japonicum, Bradyrhizobium yuanmingense, Bradyrhizobium liaoningense, Bradyrhizobium denitrificans and Rhizobium tropici species. In addition, the nodC gene studied in the selected isolates showed different allelic variants.Isolates were phenotypically characterized by assaying their growth under different abiotic stresses. Some of the local isolates were remarkably tolerant to high temperatures, extreme pH and salinity, which are all stressors commonly found in Argentinean soils. One of the isolates showed high tolerance to temperature and extreme pH, and produced higher aerial plant dry weights compared to other inoculated treatments. These results indicated that local isolates could be efficiently used for D. incanum inoculation.  相似文献   

3.
Lotus species are forage legumes with potential as pastures in low-fertility and environmentally constrained soils, owing to their high persistence and yield under those conditions. The aim of this work was the characterization of phenetic and genetic diversity of salt-tolerant bacteria able to establish efficient symbiosis with Lotus spp. A total of 180 isolates able to nodulate Lotus corniculatus and Lotus tenuis from two locations in Granada, Spain, were characterized. Molecular identification of the isolates was performed by repetitive extragenic palindromic PCR (REP-PCR) and 16S rRNA, atpD, and recA gene sequence analyses, showing the presence of bacteria related to different species of the genus Mesorhizobium: Mesorhizobium tarimense/Mesorhizobium tianshanense, Mesorhizobium chacoense/Mesorhizobium albiziae, and the recently described species, Mesorhizobium alhagi. No Mesorhizobium loti-like bacteria were found, although most isolates carried nodC and nifH symbiotic genes closely related to those of M. loti, considered the type species of bacteria nodulating Lotus, and other Lotus rhizobia. A significant portion of the isolates showed both high salt tolerance and good symbiotic performance with L. corniculatus, and many behaved like salt-dependent bacteria, showing faster growth and better symbiotic performance when media were supplemented with Na or Ca salts.Legumes can establish nitrogen-fixing associations with Gram-negative soil bacteria collectively known as rhizobia. Although the symbiotic relationships among rhizobia and many legume species of agricultural importance have been intensively studied, relatively little is known about the symbiotic bacteria of certain plant genera. Lotus is a genus of legumes that includes 125 to 130 species of herbs and small shrubs, mainly distributed in the Northern Hemisphere. Several Lotus species, particularly Lotus corniculatus, Lotus uliginosus, and Lotus tenuis, are used as pasture forage worldwide and are included by phylogenetic studies in the same clade as the model legume Lotus japonicus (4). Until recently, bacteria nodulating Lotus included both intermediate-growing (mesorhizobia) and slow-growing bacteria (12, 16). The mesorhizobia can form effective symbioses with certain Lotus spp. (group I, e.g., L. corniculatus, L. tenuis, or L. japonicus) but form tumor-like structures that do not contain bacteria on L. uliginosus, Lotus subbiflorus, and Lotus angustissimus (group II Lotus spp.) (21, 24). On the other hand, slow-growing strains are usually efficient with Lotus group II species but form no nodules or form inefficient nodules in group I species (12). However, there are rare exceptions to this rule, like strain NZP2037, that can form effective symbioses with both groups of Lotus spp. (23, 25, 28). Furthermore, fast-growing Ensifer meliloti bv. lancerottense strains have been shown to be the symbionts of Lotus lancerottensis but are unable to fix nitrogen with either group I or group II Lotus spp. (19).No apparent relationship exists between the phylogenetic position of Lotus spp. and the type of rhizobia associated. For instance, L. uliginosus and L. angustissimus, which are efficiently nodulated by the bradyrhizobia, are clustered in the same clade as L. corniculatus, L. tenuis, and L. japonicus (clade B) (4), species associated with mesorhizobia. In contrast L. subbiflorus, usually associated with the same rhizobia as L. uliginosus, is clustered in a different clade.The narrow-host-range rhizobia associated with L. corniculatus and other Lotus species were initially classified as Rhizobium loti (13). Later, when the genus Mesorhizobium was created, R. loti was reclassified as Mesorhizobium loti (14), which is considered the type species. Besides the expected differences between the moderate- and the slow-growing Lotus rhizobia, large variabilities in nitrogen-fixing effectiveness (23) as well as in total DNA-DNA hybridization (3, 6) and phylogeny (5, 40) have been shown among the “meso-growing” rhizobia strains classified as M. loti, indicating that they do not form a homogeneous group. Indeed, one of the best-characterized strains of M. loti, strain MAFF303099, has been reclassified as Mesorhizobium huakuii biovar loti (35). In fact, diverse rhizobia have recently been reported to establish symbiosis with Lotus group I species. For instance, bacteria belonging to the newly described species Mesorhizobium gobiense and Mesorhizobium tarimense, were isolated from Lotus frondosus and L. tenuis in China (10). Also, rhizobia assigned to different genera (Rhizobium, Mesorhizobium, Agrobacterium, and Aminobacter) have recently been reported as symbionts of L. tenuis in the Salado River Basin in Argentina (7). While these recent reports indicate that bacteria nodulating Lotus spp. are diverse, their symbiotic genes are rather homogeneous. In fact, most isolates from Argentina and China, regardless their taxonomic assignment, had symbiotic genes closely related to M. loti (7, 10).Soil salinity is a serious and expanding threat to agricultural productivity. Improving crop productivity in saline soils requires selection of well-adapted plant genotypes and, in the case of legumes, highly efficient rhizobial partners adapted to soil conditions. As part of the Euro-South American cooperation project LOTASSA (http://www.lotassa.com/), and aiming to isolate and select for salt-tolerant bacteria able to establish efficient symbiosis with forage Lotus spp., we explored the diversity of Lotus rhizobia in two different locations of Granada province, Spain, where the presence of native Lotus spp. had previously been reported (30).  相似文献   

4.
Aiming at learning the microsymbionts of Arachis duranensis, a diploid ancestor of cultivated peanut, genetic and symbiotic characterization of 32 isolates from root nodules of this plant grown in its new habitat Guangzhou was performed. Based upon the phylogeny of 16S rRNA, atpD and recA genes, diverse bacteria belonging to Bradyrhizobium yuanmingense, Bradyrhizobium elkanii, Bradyrhizobium iriomotense and four new lineages of Bradyrhizobium (19 isolates), Rhizobium/Agrobacterium (9 isolates), Herbaspirillum (2 isolates) and Burkholderia (2 isolates) were defined. In the nodulation test on peanut, only the bradyrhizobial strains were able to induce effective nodules. Phylogeny of nodC divided the Bradyrhizobium isolates into four lineages corresponding to the grouping results in phylogenetic analysis of housekeeping genes, suggesting that this symbiosis gene was mainly maintained by vertical gene transfer. These results demonstrate that A. duranensis is a promiscuous host preferred the Bradyrhizobium species with different symbiotic gene background as microsymbionts, and that it might have selected some native rhizobia, especially the novel lineages Bradyrhizobium sp. I and sp. II, in its new habitat Guangzhou. These findings formed a basis for further study on adaptation and evolution of symbiosis between the introduced legumes and the indigenous rhizobia.  相似文献   

5.
Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.  相似文献   

6.

Background and Aims

This study was aimed at assessing the diversity of putatively diazotrophic rhizobacteria associated with sunflower (Helianthus annuus L.) cropped in the south of Brazil, and to examine key plant growth promotion (PGP) characteristics of the isolates for the purposes of increasing plant productivity.

Methods

299 strains were isolated from the roots and rhizosphere of sunflower cultivated in five different areas using N-free media. 16S rDNA PCR-RFLP and 16S rRNA partial sequencing were used for identification and the Shannon index was used to evaluate bacterial diversity. Production of siderophores and indolic compounds (ICs), as well phosphate solubilization activities of each isolate were also evaluated in vitro. On the basis of multiple PGP activities, eight isolates were selected and tested for their N-fixation ability, and their capacity as potential PGPR on sunflower plants was also assessed.

Results

All except three Gram-positive strains (phylum Actinobacteria) belonged to the Gram-negative Proteobacteria subgroups [Gamma (167), Beta (78), and Alpha (50)] and the family Flavobacteriaceae (1)]. Shannon indexes ranged from 0.96 to 2.13 between the five sampling sites. Enterobacter and Burkholderia were the predominant genera isolated from roots and rhizosphere, respectively. Producers of siderophores and ICs were widely found amongst the isolates, but only 19.8% of them solubilized phosphate. About 8% of the isolates exhibited all three PGP traits, and these mostly belonged to the genus Burkholderia. Four isolates were able to stimulate the growth of sunflower plants under gnotobiotic conditions.

Conclusions

Enterobacter and Burkholderia were the dominant rhizospheric bacterial genera associated with sunflower plants. Inoculation with isolates belonging to the genera Achromobacter, Chryseobacterium, Azospirillum, and Burkholderia had a stimulatory effect on plant growth.  相似文献   

7.
Several bacterial isolates were recovered from surface-sterilized root nodules of Arachis hypogaea L. (peanut) plants growing in soils from Córdoba, Argentina. The 16S rDNA sequences of seven fast-growing strains were obtained and the phylogenetic analysis showed that these isolates belonged to the Phylum Proteobacteria, Class Gammaproteobacteria, and included Pseudomonas spp., Enterobacter spp., and Klebsiella spp. After storage, these strains became unable to induce nodule formation in Arachis hypogaea L. plants, but they enhanced plant yield. When the isolates were co-inoculated with an infective Bradyrhizobium strain, they were even found colonizing pre-formed nodules. Analysis of symbiotic genes showed that the nifH gene was only detected for the Klebsiella-like isolates and the nodC gene could not be amplified by PCR or be detected by Southern blotting in any of the isolates. The results obtained support the idea that these isolates are opportunistic bacteria able to colonize nodules induced by rhizobia.  相似文献   

8.
The ability of Rhizobia to colonize roots of certain legumes and promote their growth has been proven previously. In this study the symbiotic efficiency of 47 Rhizobium strains with 6 common bean cultivars was evaluated under greenhouse condition. Fourteen strains showed the best symbiotic efficiency, whereas some isolates could not induce nodules on host plants. The ability of fourteen superior strains to solubilize phosphorus and zinc and to produce auxin, HCN and siderohores was evaluated in the laboratory assays. Rhizobium strain Rb102 produced the highest amount of auxin (14.2?mg?l?1) in the medium containing l-tryptophan. None of the isolates were able to solubilize ZnO and ZnCO3 on solid medium but in liquid medium some of them had negligible solubilization. The highest P solubility in liquid and solid medium was observed in strains Rb113 and Rb130, respectively. Strain Rb102 produced the highest amount of siderophores. None of the isolates were able to produce HCN. This study showed that there was a great diversity between the strains of Rhizobium in terms of their plant growth promoting traits symbiotic efficiency which supports the importance of screening rhizobia for selecting the most efficient strains. The genetic diversity of the isolates was analyzed by PCR–RFLP of the 16S rDNA. Our rhizobia were clustered into 10 groups showing high levels of diversity.  相似文献   

9.
Very little is known about the genetic diversity and phylogeny of rhizobia nodulating Lotus species in northern temperate regions. We have therefore studied the genetic diversity among a total of 61 root nodule bacteria isolated from Lotus corniculatus and Anthyllis vulneraria from different geographic sites and habitats in Sweden by restriction fragment length polymorphism (RFLP) of the internal transcribed spacer between their 16S rRNA and 23S rRNA (IGS) region. A high diversity consisting of 26 IGS types from 54 L. corniculatus isolates and five IGS types from seven A. vulneraria isolates was found. The 16S rRNA sequences and phylogeny of representatives of the different IGS types showed four interesting exceptions from the majority of the isolates belonging to the genus Mesorhizobium: Two isolates were both found to be closely related to Rhodococcus spp., and two other isolates showed close relationship with Geobacillus spp. and Paenibacillus spp., respectively. The nodA sequences and phylogeny showed that all the isolates, including those not belonging to the traditional rhizobia genera, harbored nodA sequences which were typical of Mesorhizobium loti. Generally, the 16S rRNA and nodA phylogenetic trees were not congruent in that isolates with similar 16S rRNA sequences were associated with isolates harboring different nodA sequences. All the isolates were confirmed to nodulate L. corniculatus in an inoculation test. This is the first report of members of these non-rhizobia genera being able to nodulate legumes, and we suggest that they may have acquired their nodulating properties through lateral gene transfer.  相似文献   

10.

Background and Aims

Several strains of rhizobacteria may be found in the rhizospheric soil, on the root surface or in association with rice plants. These bacteria are able to colonize plant root systems and promote plant growth and crop yield through a variety of mechanisms. The objectives of this study were to isolate, identify, and characterize putative plant growth-promoting rhizobacteria (PGPR) associated with rice cropped in different areas of southern Brazil.

Methods

Bacterial strains were selectively isolated based on their growth on three selective semi-solid nitrogen-free media. Bacteria were identified at the genus level by PCR-RFLP 16S rRNA gene analysis and partial sequencing methodologies. Bacterial isolates were evaluated for their ability to produce indolic compounds and siderophores and to solubilize phosphate. In vitro biological nitrogen fixation and the ability to produce 1-aminocyclopropane-1-carboxylate deaminase were evaluated for each bacterial isolate used in the inoculation experiments.

Results

In total, 336 bacterial strains were isolated representing 31 different bacterial genera. Strains belonging to the genera Agrobacterium, Burkholderia, Enterobacter, and Pseudomonas were the most prominent isolates. Siderophore and indolic compounds producers were widely found among isolates, but 101 isolates were able to solubilize phosphate. Under gnotobiotic conditions, eight isolates were able to stimulate the growth of rice plants. Five of these eight isolates were also field tested in rice plants subjected to different nitrogen fertilization rates.

Conclusions

The results showed that the condition of half-fertilization plus separate inoculation with the isolates AC32 (Herbaspirillum sp.), AG15 (Burkholderia sp.), CA21 (Pseudacidovorax sp.), and UR51 (Azospirillum sp.) achieved rice growth similar to those achieved by full-fertilization without inoculation, thus highlighting the potential of these strains for formulating new bioinoculants for rice crops.  相似文献   

11.
Host range and cross-infectivity studies are important for identifying rhizobial strains with potential for use as inoculants. In this study, 10 native soybean rhizobia isolated from Mozambican and South African soils were evaluated for host range, symbiotic effectiveness and ability to induce high rates of photosynthesis leading to enhanced plant growth in cowpea (Vigna unguiculata L. Walp.), Bambara groundnut (Vigna subterranean L. Verdc.), Kersting’s groundnut (Macrotyloma geocarpum Harm) and soybean (Glycine max L. Merr). The test isolates had different growth rates and colony sizes. Molecular analysis based on enterobacterial repetitive intergenic consensus (ERIC)-PCR revealed high genetic diversity among the test isolates. The results further showed that isolate TUTLBC2B failed to elicit nodulation in all test plants, just as TUTNSN2A and TUTDAIAP3B were also unable to nodulate cowpea, Kersting’s bean and Bambara groundnut. Although the remaining strains formed ineffective nodules on cowpea and Kersting’s bean, they induced effective nodules on Bambara groundnut and the two soybean genotypes. Bacterial stimulation of nodule numbers, nodule dry weights and photosynthetic rates was generally greater with isolates TUTRSRH3A, TUTM19373A, TUTMCJ7B, TUTRLR3B and TUTRJN5A. As a result, these isolates elicited significantly increased accumulation of biomass in shoots and whole plants of Bambara groundnut and the two soybean genotypes. Whole-plant symbiotic nitrogen (N) of soybean and Bambara groundnut was highest for the commercial strains CB756 and WB74, as well as for TUTRLR3B, TUTMCJ7B and TUTRSRH3A, suggesting that the three native rhizobial isolates have potential for use as inoculants.  相似文献   

12.

Aims

In the past decades the increasing focus by Australian pasture development programs on the genus Lotus has seen the evaluation of many species previously untested in Australia. In field trials, nodulation failure was commonplace. This work was undertaken to select effective symbionts for Lotus to ensure further agronomic evaluation of the genus was not compromised. The symbiotic needs of Lotus ornithopodioides were a particular focus of the studies.

Methods

Glasshouse experiments were undertaken to evaluate symbiotic relationships between 15 Lotus spp and 23 strains of nodulating Mesorhizobium loti. This was followed by evaluation of elite rhizobial strains for their ability to persist and form nodules under field conditions.

Results

Complex symbiotic interactions were recorded between strains of lotus rhizobia and the different species of Lotus. Notably, the rhizobia that are currently provided commercially in Australia for the inoculation of Lotus corniculatus (strain SU343) and Lotus uliginosus (strain CC829) did not form effective symbioses with the promising species L. ornithopodioides and L. maroccanus. No strain we evaluated was compatible with all the Lotus species, however several strains with a broad host range were identified. WSM1293 and WSM1348 were the most effective strains on L. ornithopodioides and L. peregrinus.These strains were also moderately effective on L. corniculatus (79 and 52% of SU343), less effective on L. maroccanus (26 and 49% of SRDI110) but were ineffective on L. uliginosus. The latter species overall had very specific rhizobial needs. Both WSM1293 and WSM1348 produced adequate levels of nodulation when inoculated on L. ornithopodioides, over two seasons at three field sites.

Conclusions

Effective and persistent strains are now available that should allow the un-compromised evaluation of many of the contemporary Lotus species in the field. Selecting a strain for use in commercial inoculants will be more problematic, given the very large host-strain interactions for nitrogen fixation. Here, the balance of Lotus species which are adopted by farmers will have a strong bearing on which rhizobial strains are progressed to commerce.  相似文献   

13.
The ability of random amplified polymorphic DNA (RAPD) to distinguish among different taxa of Lotus was evaluated for several geographically dispersed accessions of four diploid Lotus species, L. tennis Waldst. et Kit, L. alpinus Schleich., L. japonicus (Regel) Larsen, and L. uliginosus Schkuhr and for the tetraploid L. corniculatus L., in order to ascertain whether RAPD data could offer additional evidence concerning the origin of the tetraploid L. corniculatus. Clear bands and several polymorphisms were obtained for 20 primers used for each species/accession. The evolutionary pathways among the species/accessions presented in a cladogram were expressed in terms of treelengths giving the most parsimonious reconstructions. Accessions within the same species grouped closely together. It is considered that L. uliginosus which is most distantly related to L. corniculatus, may be excluded as a direct progenitor of L. corniculatus, confirming previous results from isoenzyme studies. Lotus alpinus is grouped with accessions of L. corniculatus, which differs from previous studies. With this exception, these findings are in agreement with previous experimental studies in the L. corniculatus group. The value of the RAPD data to theories on the origin of L. corniculatus is discussed.  相似文献   

14.
Twenty-five Rhizobium strains were isolated from root nodules of Astragalus spp. (10), Hedysarum alpinum (7), Glycyrrhiza pallidiflora (3) and Ononis arvensis (5). The sensitivity of these strains to bacteriophages of Rhizobium loti, R. meliloti, R. galegae and R. leguminosarum was studied. Phages specific to R. loti strains were shown to induce the phage lysis of several Astragalus, Hedysarum and Ononis rhizobia. Ten R. loti strains tested for nodulation abilities on the plant hosts under investigation were able to develop nitrogen-fixing nodules on the Ononis arvensis roots. On the other hand, rhizobia from Ononis and Glycyrrhiza could form an effective symbiosis with Lotus corniculatus plants, so these bacteria are considered to belong to the Rhizobium loti taxon. Bacterial strains isolated from Astragalus and Hedysarum were observed to cross-nodulate their plant hosts as well as Oxytropis campestris, Glycyrrhiza uralensis and Ononis arvensis plants, whereas they could not nodulate Lotus plants. It is concluded that these Rhizobium strains comprise a cross-inoculation group related to Rhizobium loti. ei]{gnR O D}{fnDixon}  相似文献   

15.
The mutualism between legumes and nitrogen-fixing soil bacteria (rhizobia) is a key feature of many ecological and agricultural systems, yet little is known about how this relationship affects aboveground interactions between plants and herbivores. We investigated the effects of the rhizobia mutualism on the abundance of a specialized legume herbivore on soybean plants. In a field experiment, soybean aphid (Aphis glycines) abundances were measured on plants (Glycine max) that were either (1) treated with a commercial rhizobial inoculant, (2) associating solely with naturally occurring rhizobia, or (3) given nitrogen fertilizer. Plants associating with naturally occurring rhizobia strains exhibited lower aphid population densities compared to those inoculated with a commercial rhizobial preparation or given nitrogen fertilizer. Genetic analyses of rhizobia isolates cultured from field plants revealed that the commercial rhizobia strains were phylogenetically distinct from naturally occurring strains. Plant size, leaf nitrogen concentration, and nodulation density were similar among rhizobia-associated treatments and did not explain the observed differences in aphid abundance. Our results demonstrate that plant–rhizobia interactions influence plant resistance to insect herbivores and that some rhizobia strains confer greater resistance to their mutualist partners than do others.  相似文献   

16.
《Phytochemistry》1986,25(10):2299-2302
Experiments in which unlabelled and [aglycone 14C-labelled cyanogenic glycosides, linamarin and lotaustralin, were fed to larvae of the moth Zygaena trifolii on leaves of an acyanogenic strain of their food plant, Lotus corniculatus, showed that the larvae retained about 20–45% of the glucosides consumed. The larvae in nature usually feed on plants of L. corniculatus which themselves contain linamarin and lotaustralin. Earlier experiments had shown that the larvae of Zygaena spp. are able to synthesize these glucosides from valine and isoleucine and so both sequestration and biosynthesis of the same compounds can occur. This is the only such occurrence yet known in the relationships between plants and insects.  相似文献   

17.
The response of legumes to inoculation with rhizobia can be affected by many factors. Little work has been undertaken to examine how indigenous populations or rhizobia affect this response. We conducted a series of inoculation trials in four Hawaiian soils with six legume species (Glycine max, Vigna unguiculata, Phaseolus lunatus, Leucaena leucocephala, Arachis hypogaea, and Phaseolus vulgaris) and characterized the native rhizobial populations for each species in terms of the number and effectiveness of the population for a particular host. Inoculated plants had, on average, 76% of the nodules formed by the inoculum strain, which effectively eliminated competition from native strains as a variable between soils. Rhizobia populations ranged from less than 6 × 100/g of soil to 1 × 104/g of soil. The concentration of nitrogen in shoots of inoculated plants was not higher than that in uninoculated controls when the most probable number MPN counts of rhizobia were at or above 2 × 101/g of soil unless the native population was completely ineffective. Tests of random isolates from nodules of uninoculated plants revealed that within most soil populations there was a wide range of effectiveness for N2 fixation. All populations had isolates that were ineffective in fixing N2. The inoculum strains generally did not fix more N2 than the average isolate from the soil population in single-isolate tests. Even when the inoculum strain proved to be a better symbiont than the soil rhizobia, there was no response to inoculation. Enhanced N2 fixation after inoculation was related to increased nodule dry weights. Although inoculation generally increased nodule number when there were less than 1 × 102 rhizobia per g of soil, there was no corresponding increase in nodule dry weight when native populations were effective. Most species compensated for reduced nodulation in soils with few rhizobia by increasing the size of nodules and therefore maintaining a nodule dry weight similar to that of inoculated plants with more nodules. Even when competition by native soil strains was overcome with a selected inoculum strain, it was not always possible to enhance N2 fixation when soil populations were above a threshold number and had some effective strains.  相似文献   

18.
Variation in nodulation preferences for Rhizobium strains within and between Medicago sativa cultivars was assessed in the greenhouse with plants grown in Leonard jars and two soils of diverse origin (Lanark and Ottawa), using inocula consisting of effective individual or paired strains of R. meliloti which could be recognized by high-concentration antibiotic resistance. The results indicated considerable variability in host preferences for R. meliloti among plants within cultivars but not between cultivars. The implications of this variation are discussed from the point of view of possible improvement of symbiotic nitrogen fixation. With one exception, the differences in nodulation success between inoculant R. meliloti strains were consistent in Leonard jars and both soils. All introduced strains formed significantly more nodules in Renfrew soil containing few native rhizobia than in Ottawa soil with a large resident R. meliloti population. Plants grown in Lanark soil without inoculation were ineffectively nodulated by native rhizobia and yielded significantly less growth than those receiving inoculation. In contrast, the yield of inoculated plants in Ottawa soil did not significantly differ from those without inoculation due to effective nodulation by native R. meliloti. The data indicated synergistic effects on yield by certain paired strain inocula relative to the same strains inoculated individually in Lanark but not in Ottawa soil or Leonard jars.  相似文献   

19.
The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates'' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations.  相似文献   

20.
This study compared the response of common bean (Phaseolus vulgaris L.) to arbuscular mycorrhizal fungi (AMF) and rhizobia strain inoculation. Two common bean genotypes i.e. CocoT and Flamingo varying in their effectiveness for nitrogen fixation were inoculated with Glomus intraradices and Rhizobium tropici CIAT899, and grown for 50 days in soil–sand substrate in glasshouse conditions. Inoculation of common bean plants with the AM fungi resulted in a significant increase in nodulation compared to plants without inoculation. The combined inoculation of AM fungi and rhizobia significantly increased various plant growth parameters compared to simple inoculated plants. In addition, the combined inoculation of AM fungi and rhizobia resulted in significantly higher nitrogen and phosphorus accumulation in the shoots of common bean plants and improved phosphorus use efficiency compared with their controls, which were not dually inoculated. It is concluded that inoculation with rhizobia and arbuscular mycorrhizal fungi could improve the efficiency in phosphorus use for symbiotic nitrogen fixation especially under phosphorus deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号