首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

The proteins Sm1 and Sm2 from the biocontrol fungus Trichoderma virens belong to the cerato-platanin protein family. Members of this family are small, secreted proteins that are abundantly produced by filamentous fungi with all types of life-styles. Some species of the fungal genus Trichoderma are considered as biocontrol fungi because they are mycoparasites and are also able to directly interact with plants, thereby stimulating plant defense responses. It was previously shown that the cerato-platanin protein Sm1 from T. virens - and to a lesser extent its homologue Epl1 from Trichoderma atroviride - induce plant defense responses. The plant protection potential of other members of the cerato-platanin protein family in Trichoderma, however, has not yet been investigated.

Results

In order to analyze the function of the cerato-platanin protein Sm2, sm1 and sm2 knockout strains were generated and characterized. The effect of the lack of Sm1 and Sm2 in T. virens on inducing systemic resistance in maize seedlings, challenged with the plant pathogen Cochliobolus heterostrophus, was tested. These plant experiments were also performed with T. atroviride epl1 and epl2 knockout strains. In our plant-pathogen system T. virens was a more effective plant protectant than T. atroviride and the results with both Trichoderma species showed concordantly that the level of plant protection was more strongly reduced in plants treated with the sm2/epl2 knockout strains than with sm1/epl1 knockout strains.

Conclusions

Although the cerato-platanin genes sm1/epl1 are more abundantly expressed than sm2/epl2 during fungal growth, Sm2/Epl2 are, interestingly, more important than Sm1/Epl1 for the promotion of plant protection conferred by Trichoderma in the maize-C. heterostrophus pathosystem.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-014-0333-0) contains supplementary material, which is available to authorized users.  相似文献   

3.
担子菌类的食用菌种类多、价值高、产量大,然而其产业的升级发展需要对食用菌生长发育相关生物学问题进行深入解析。目前多种食用菌完成了全基因组测序,然而作为非模式种其与模式丝状真菌间的直系同源基因目前尚缺乏全基因组水平的系统研究,在一定程度上限制了其分子生物学研究的深入。本研究以草菇为参照物种,将其与几种食用菌和模式丝状真菌进行两两直系同源基因分析,并对多物种间不同类型的直系同源基因进行功能富集。结果显示:一对一直系同源基因较多富集于基因复制、转录、翻译、修饰、加工等保守的基本功能类别;非一对一直系同源基因多属于基因家族,且包含了65%的转录因子,功能上富集在碳水化合物、脂质、氨基酸、次生代谢物及外源物质的代谢通路。无直系同源基因则较多富集在与基因重组、修复、信号转导相关的功能类别、特导性转录因子以及未知的预测基因。结果为食用菌分子生物学的深入研究提供有价值的参考。  相似文献   

4.
A new phytotoxic protein (cerato-platanin) of about 12.4 kDa has been identified in culture filtrates of the Ascomycete Ceratocystis fimbriata f. sp. platani, the causal agent of canker stain disease. The toxicity of the pure protein was bioassayed by detecting the inducing necrosis in tobacco leaves. The pure protein also elicited host synthesis of fluorescent substances in tobacco and plane (Platanus acerifolia) leaves. We purified the protein from culture medium to homogeneity. Its complete amino acid sequence was determined; this protein consists of 120 amino acid residues, contains 4 cysteines (S-S-bridged), and has a high percentage of hydrophobic residues. The molecular weight calculated from the amino acid sequence agrees with that determined by mass spectrometry, suggesting that no post-transnational modification occurs. Searches performed by the BLAST program in data banks (Swiss-Prot, EBI, and GenBank(TM)) revealed that this protein is highly homologous with two proteins produced by other Ascomycete fungi. One, produced during infection of wheat leaves, is codified by the snodprot1 gene of Phaeosphaeria nodorum (the causal agent of glume blotch of wheat), whereas the other is the rAsp f13 allergen from Aspergillus fumigatus. Furthermore, the N terminus of cerato-platanin is homologous with that of cerato-ulmin, a phytotoxic protein belonging to the hydrophobin family and produced by Ophiostoma (Ceratocystis) ulmi, a fungus responsible for Dutch elm disease.  相似文献   

5.
Among their various functions, the members of the cerato-platanin family can stimulate plants' defense responses and induce resistance against microbial pathogens. Recent results suggest that conserved loops, also involved in chitin binding, might be a structural motif central for their eliciting activity. Here, we focus on cerato-platanin and its orthologous cerato-populin, searching for a rationale of their diverse efficiency to elicit plants' defense and to interact with oligosaccharides. A 3D model of cerato-populin has been generated by homology modeling using the NMR-derived cerato-platanin structure as template, and it has been validated by fitting with residual dipolar couplings. Loops β1-β2 and β2-β3 have been indicated as important for some CPPs members to express their biological function. When compared to cerato-platanin, in cerato-populin they present two mutations and an insertion that significantly modify their electrostatic surface. NMR relaxation experiments point to a reduced conformational plasticity of cerato-populin loops with respect to the ones of cerato-platanin. The different electrostatic surface of the loops combined with a distinct network of intra-molecular interactions are expected to be factors that, by leading to a diverse spatial organization and dissimilar collective motions, can regulate the eliciting efficacy of the two proteins and their affinity for oligosaccharides.  相似文献   

6.
7.
Twenty years of research on cerato-platanin family proteins (CPPs) have led to some clear conclusions: CPPs are exclusively present in the fungal kingdom and possess an outstanding capacity to stimulate the immune system of plants. Recent discoveries have highlighted remarkable structural and functional similarities between CPPs and expansins, a class of non-enzymatic proteins found in both plants and microbes possessing loosening ability on the cell wall structure. Nevertheless, the determination of a biological role for CPPs in fungi is becoming a complicated puzzle to solve, since experimental data are often divergent and point to functional diversification. A general consensus appears however possible: CPPs from pathogenic and beneficial fungi may be considered as microbe-associated molecular patterns (MAMPs) and likely play a dual role, exerting functions in the fungal cell wall and/or in plant colonization. In this review, which celebrates 20 y of research on CPPs, we trace the history of these proteins and highlight experimental evidence and still unsolved issues.  相似文献   

8.
9.
10.
11.
Ectomycorrhizae formed by the symbiotic interaction between ectomycorrhizal fungi and plant roots play a key role in maintaining and improving the health of a wide range of plants. Mycorrhizal initiation, development, and functional maintenance involve morphological changes that are mediated by activation and suppression of several fungal and plant genes. We identified a gene, Lbras, in the ectomycorrhizal fungus Laccaria bicolor that belongs to the ras family of genes, which has been shown in other systems to be associated with signaling pathways controlling cell growth and proliferation. The Lbras cDNA complemented ras2 function in Saccharomyces cerevisiae and had the ability to transform mammalian cells. Expression of Lbras, present as a single copy in the genome, was dependent upon interaction with host roots. Northern analysis showed that expression was detectable in L bicolor 48 h after interaction as well as in the established mycorrhizal tissue. Phylogenetic analysis with other Ras proteins showed that Lbras is related most closely to Aras of Aspergillus nidulans.  相似文献   

12.
Hydrophobins are morphogenetic, small secreted hydrophobic fungal proteins produced in response to changing development and environmental conditions. These proteins are important in the interaction between certain fungi and their hosts. In mutualistic ectomycorrhizal fungi several hydrophobins form a subclass of mycorrhizal-induced small secreted proteins that are likely to be critical in the formation of the symbiotic interface with host root cells. In this study, two genomes of the ectomycorrhizal basidiomycete Laccaria bicolor strains S238N-H82 (from North America) and 81306 (from Europe) were surveyed to construct a comprehensive genome-wide inventory of hydrophobins and to explore their characteristics and roles during host colonization. The S238N-H82 L. bicolor hydrophobin gene family is composed of 12 genes while the 81306 strain encodes nine hydrophobins, all corresponding to class I hydrophobins. The three extra hydrophobin genes encoded by the S238N-H82 genome likely arose via gene duplication and are bordered by transposon rich regions. Expression profiles of the hydrophobin genes of L. bicolor varied greatly depending on life stage (e.g. free living mycelium vs. root colonization) and on the host root environment. We conclude from this study that the complex diversity and range of expression profiles of the Laccaria hydrophobin multi-gene family have likely been a selective advantage for this mutualist in colonizing a wide range of host plants.  相似文献   

13.
《Genomics》2020,112(5):3108-3116
The ADAM (A Disintegrin And Metalloprotease) gene family encodes proteins with adhesion and proteolytic functions. ADAM proteins are associated with diseases like cancers. Twenty ADAM genes have been identified in humans. However, little is known about the evolution of the family. We analyzed the repertoire of ADAM genes in a vast number of eukaryotic genomes to clarify the main gene copy number expansions. For the first time, we provide compelling evidence that early-branching green algae (Mamiellophyceae) have ADAM genes, suggesting that they originated in the last common ancestor of eukaryotes, before the split of plants, fungi and animals. The ADAM family expanded in early metazoans, with the most significative gene expansion happening during the first steps of vertebrate evolution. We concluded that most of mammal ADAM diversity can be explained by gene duplications in early bone fish. Our data suggest that ADAM genes were lost early in green plant evolution.  相似文献   

14.
The function and structure of LysM-domain containing proteins are very diverse. Although some LysM domains are able to bind peptidoglycan or chitin type carbohydrates in bacteria, in fungi and in plants, the function(s) of vertebrate LysM domains and proteins remains largely unknown. In this study we have identified and annotated the six zebrafish genes of this family, which encode at least ten conceptual LysM-domain containing proteins. Two distinct sub-families called LysMD and OXR were identified and shown to be highly conserved across vertebrates. The detailed characterization of LysMD and OXR gene expression in zebrafish embryos showed that all the members of these sub-families are strongly expressed maternally and zygotically from the earliest stages of a vertebrate embryonic development. Moreover, the analysis of the spatio-temporal expression patterns, by whole mount and fluorescent in situ hybridizations, demonstrates pronounced LysMD and OXR gene expression in the zebrafish brain and nervous system during stages of larval development. None of the zebrafish LysMD or OXR genes was responsive to challenge with bacterial pathogens in embryo models of Salmonella and Mycobacterium infections. In addition, the expression patterns of the OXR genes were mapped in a zebrafish brain atlas.  相似文献   

15.
Glycosyl hydrolase family 28 (GH28) is a set of structurally related enzymes that hydrolyze glycosidic bonds in pectin, and are important extracellular enzymes for both pathogenic and saprotrophic fungi. Yet, very little is understood about the evolutionary forces driving the diversification of GH28s in fungal genomes. We reconstructed the evolutionary history of family GH28 in fungi by examining the distribution of GH28 copy number across the phylogeny of fungi, and by reconstructing the phylogeny of GH28 genes. We also examined the relationship between lineage-specific GH28 expansions and fungal ecological strategy, testing the hypothesis that GH28 evolution in fungi is driven by ecological strategy (pathogenic vs. non-pathogenic) and pathogenic niche (necrotrophic vs. biotrophic). Our results showed that GH28 phylogeny of Ascomycota and Basidiomycota sequences was structured by specific biochemical function, with endo-polygalacturonases and endo-rhamnogalacturonases forming distinct, apparently ancient clades, while exo-polygalacturonases are more widely distributed. In contrast, Mucoromycotina and Stramenopile sequences formed taxonomically-distinct clades. Large, lineage-specific variation in GH28 copy number indicates that the evolution of this gene family is consistent with the birth-and-death model of gene family evolution, where diversity of GH28 loci within genomes was generated through multiple rounds of gene duplication followed by functional diversification and loss of some gene family members. Although GH28 copy number was correlated with genome size, our findings suggest that ecological strategy also plays an important role in determining the GH28 repertoire of fungi. Both necrotrophic and biotrophic fungi have larger genomes than non-pathogens, yet only necrotrophs possess more GH28 enzymes than non-pathogens. Hence, lineage-specific GH28 expansion is the result of both variation in genome size across fungal species and diversifying selection within the necrotrophic plant pathogen ecological niche. GH28 evolution among necrotrophs has likely been driven by a co-evolutionary arms race with plants, whereas the need to avoid plant immune responses has resulted in purifying selection within biotrophic fungi.  相似文献   

16.
Based on sequence homology, several fungal Cys-rich secreted proteins have been grouped in the cerato-platanin (CP) family, which comprises at least 40 proteins involved mainly in eliciting defense-related responses. The core member of this family is cerato-platanin, a moderately hydrophobic protein with a double ψ–β barrel fold. CP and the recently identified orthologous cerato-populin (Pop1) are involved in host–fungus interaction, and can be considered non-catalytic fungal PAMPs. CP is more active in inducing defense when in an aggregated conformation than in its native form, but little is known about other CP-orthologous proteins. Here, we cloned, expressed, and purified recombinant Pop1, which was used to characterize the protein aggregates. Our results suggest that the unfolded, self-assembled Pop1 is more active in inducing defense, and that the unfolding process can be induced by interaction with hydrophobic inanimate surfaces such as Teflon, treated mica, and gold sheets. In vivo, we found that both CP and Pop1 interact with the hydrophobic cuticle of leaves. Therefore, we propose that the interaction of these proteins with host cuticle waxes could induce unfolding and consequently trigger their PAMP-like activity.  相似文献   

17.
GATA转录因子基因家族在植物生长发育、细胞分化以及响应环境变化中具有重要作用。然而,目前在木本植物中尚无该基因家族全基因组水平的分析报导。本项研究从基因组水平对毛果杨GATA家族成员的数量、基因结构、染色体定位、系统进化、编码蛋白的理化特征和保守基序等信息进行了系统分析,结果表明,毛果杨GATA家族包含39个基因,共分布于15条染色体上,其中5号染色体上含有6个基因,9号、13号和19号染色体含有基因数量为1,其余染色上无基因分布。该家族各基因的结构与编码蛋白的基本特性均存在一定异性,可分成4个亚族。qRT-PCR研究表明,GATA家族各基因在不同发育阶段的茎部表达量存在明显差异,且盐胁迫对各基因的表达特性影响显著。以上结果表明,毛果杨GATA家族基因在复制后,基因的结构与功能产生了明显分化,其中部分基因在毛果杨次生生长与盐胁迫响应中可能具有重要作用。本项研究为全面解析毛果杨GATA家族各成员在其生长发育与盐胁迫响应中的生物学功能奠定了基础。  相似文献   

18.
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号