首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Biophysical journal》2020,118(9):2319-2332
The nuclear morphology of eukaryotic cells is determined by the interplay between the lamina forming the nuclear skeleton, the chromatin inside the nucleus, and the coupling with the cytoskeleton. Nuclear alterations are often associated with pathological conditions as in Hutchinson-Gilford progeria syndrome, in which a mutation in the lamin A gene yields an altered form of the protein, named progerin, and an aberrant nuclear shape. Here, we introduce an inducible cellular model of Hutchinson-Gilford progeria syndrome in HeLa cells in which increased progerin expression leads to alterations in the coupling of the lamin shell with cytoskeletal or chromatin tethers as well as with polycomb group proteins. Furthermore, our experiments show that progerin expression leads to enhanced nuclear shape fluctuations in response to cytoskeletal activity. To interpret the experimental results, we introduce a computational model of the cell nucleus that explicitly includes chromatin fibers, the nuclear shell, and coupling with the cytoskeleton. The model allows us to investigate how the geometrical organization of the chromatin-lamin tether affects nuclear morphology and shape fluctuations. In sum, our findings highlight the crucial role played by lamin-chromatin and lamin-cytoskeletal alterations in determining nuclear shape morphology and in affecting cellular functions and gene regulation.  相似文献   

3.
利用脉冲电泳(PulsedFieldGelElectrophoresis,PFGE)分析了酵母菌A364a的电泳核型,以5号染色体专一探针确定了该染色体在电泳核型中的位置,以内切酶BamHI对该染色体DNA进行部分酶切后,与整合型载体YIp5连接获得了一个染色体专一的基因文库,其转化子数目超过了理论要求值。从文库中筛选与已知探针有同源性的片段并用内切酶BamHI,EcoRI,HindII,PstI和SalI分析这些插入片段,获得了一个覆盖A364a5号染色体(其长度估计为620kb)9.4%的精细物理图谱。利用边界克隆和菌落杂交将使我们能够对整条染色体进行进一步的“步查”  相似文献   

4.
5.
6.
7.
How the same DNA sequences can function in the three-dimensional architecture of interphase nucleus, fold in the very compact structure of metaphase chromosomes and go precisely back to the original interphase architecture in the following cell cycle remains an unresolved question to this day. The strategy used to address this issue was to analyze the correlations between chromosome architecture and the compositional patterns of DNA sequences spanning a size range from a few hundreds to a few thousands Kilobases. This is a critical range that encompasses isochores, interphase chromatin domains and boundaries, and chromosomal bands. The solution rests on the following key points: 1) the transition from the looped domains and sub-domains of interphase chromatin to the 30-nm fiber loops of early prophase chromosomes goes through the unfolding into an extended chromatin structure (probably a 10-nm “beads-on-a-string” structure); 2) the architectural proteins of interphase chromatin, such as CTCF and cohesin sub-units, are retained in mitosis and are part of the discontinuous protein scaffold of mitotic chromosomes; 3) the conservation of the link between architectural proteins and their binding sites on DNA through the cell cycle explains the “mitotic memory” of interphase architecture and the reversibility of the interphase to mitosis process. The results presented here also lead to a general conclusion which concerns the existence of correlations between the isochore organization of the genome and the architecture of chromosomes from interphase to metaphase.  相似文献   

8.
Yeast artificial chromosome (YAC) clones were ordered for thephysical mapping of rice chromosome 2, the last of the 12 ricechromosomes to be assigned YACs by the Rice Genome ResearchProgram. A total of 128 restriction fragment length polymorphismmarkers and 4 sequence-tagged site (STS) markers located onour high-density genetic map were used for YAC clone landing.By colony/Southern hybridization and polymerase chain reactionscreening, a total of 239 individual YACs were selected fromour YAC library of 6934 clones covering six genome equivalents.The YACs located on the corresponding marker positions in thelinkage map formed 43 contigs and islands and were estimatedto encompass about 50% of the length of rice chromosome 2.  相似文献   

9.
Kalebina  T. S.  Rekstina  V. V. 《Molecular Biology》2019,53(6):850-861
Molecular Biology - This review summarizes the main achievements of recent years in molecular organization research of yeast cell surface, i.e., the compartment that consists of the coordinately...  相似文献   

10.
Chromosomal translocations have long been known for their association with malignant transformation, particularly in hematopoietic disorders such as B-cell lymphomas. In addition to the physiological process of maturation, which creates double strand breaks in immunoglobulin gene loci, environmental factors including the Epstein–Barr and human immunodeficiency viruses, malaria-causing parasites (Plasmodium falciparum), and plant components (Euphorbia tirucalli latex) can trigger a reorganization of the nuclear architecture and DNA damage that together will facilitate the occurrence of deleterious chromosomal rearrangements.  相似文献   

11.
12.
Chromosome Behavior and Nuclear Development in Tradescantia   总被引:2,自引:0,他引:2  
Sax K 《Genetics》1937,22(5):523-533
  相似文献   

13.
Douglas Campbell 《Genetics》1980,96(3):613-625
Experimental tests with the yeast Saccharomyces cerevisiae of a previously proposed model suggesting a causal relationship between disomic chromosome loss (n + 1 → n) and centromere-adjacent mitotic gene conversion were performed. Disomic haploid cells heteroallelic at two loci on the left arm of chromosome III were exposed to ethyl methanesulfonate (EMS) under nonlethal conditions; EMS-induced prototrophic gene convertants were selected and tested for coincident chromosome loss. The principal results are: (1) The frequency of chromosome loss among EMS-induced gene convertants selected to arise near the centromere is markedly enhanced over basal levels and remains constant, independent of EMS exposure. There is little such enhancement among EMS-induced convertants selected to arise far from the centromere. (2) Chromosome loss is almost completely associated with induced conversion of the centromere-proximal allele at the centromere-adjacent heteroallelic locus. This result is identical to (and confirms) results found previously for spontaneous loss-associated conversion. (3) The conversion polarity at the centromere-adjacent locus among unselected (nonloss-associated) induced or spontaneous mitotic convertants is identical to that among meiotic convertants and markedly favors the contromere-distal allele. These findings are wholly consistent with, and strengthen, the hypothesis that structural involvement of centromeric regions in nearby recombinational events may interfere with proper segregational function and lead to mitotic chromosome loss.  相似文献   

14.
15.
16.
17.
Jules O''Rear  Jasper Rine 《Genetics》1986,113(3):517-529
In Saccharomyces cerevisiae, a reciprocal translocation between chromosome II and a linear plasmid carrying a centromere (CEN6) has split chromosome II into two fragments: one, approximately 530 kilobase pairs (kbp) in size, has the left arm and part of the right arm of chromosome II; the other, a telocentric fragment approximately 350 kbp in size, has CEN6 and the rest of the right arm of chromosome II. A cross of this yeast strain with a strain containing a complete chromosome II exhibits a high frequency of precocious centromere separation (separation of sister chromatids during meiosis I) of the telocentric fragment. Precocious centromere separation is not due to the position of the centromere per se, since diploids that are homozygous for both fragments of chromosome II segregate the telocentric fragment with normal meiotic behavior. The precocious centromere separation described here differs from previously described examples in that pairing and synapsis of this telocentric chromosome seem to be normal. One model of how centromeres function in meiosis is that replication of the centromere is delayed until the second meiotic division. Data presented in this paper indicate that replication of the centromere is complete before the first meiotic division. The precocious separation of the centromere described here may be due to improper synapsis of sequences flanking the centromere.  相似文献   

18.
In Vivo Dynamics of Nuclear Pore Complexes in Yeast   总被引:7,自引:1,他引:6       下载免费PDF全文
While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.  相似文献   

19.
20.
Telomere repeat-like sequences at DNA double-strand breaks (DSBs) inhibit DNA damage signaling and serve as seeds to convert DSBs to new telomeres in mutagenic chromosome healing pathways. We find here that the response to seed-containing DSBs differs fundamentally between budding yeast (Saccharomyces cerevisiae) cells that maintain their telomeres via telomerase and so-called postsenescence survivors that use recombination-based alternative lengthening of telomere (ALT) mechanisms. Whereas telomere seeds are efficiently elongated by telomerase, they remain remarkably stable without de novo telomerization or extensive end resection in telomerase-deficient (est2Δ, tlc1Δ) postsenescence survivors. This telomere seed hyper-stability in ALT cells is associated with, but not caused by, prolonged DNA damage checkpoint activity (RAD9, RAD53) compared to telomerase-positive cells or presenescent telomerase-negative cells. The results indicate that both chromosome healing and anticheckpoint activity of telomere seeds are suppressed in yeast models of ALT pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号