首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The allelic diversity of high-moleculat-weght glutenin subunits (HMWGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism polymorphism information content (PIC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.  相似文献   

2.

Key message

Recombination at the Glu-3 loci was identified, and strong genetic linkage was observed only between the amplicons representing i-type and s-type genes located, respectively, at the Glu-A3 and Glu-B3 loci.

Abstract

The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat end-use quality. The genes encoding this class of proteins are located at the orthologous Glu-3 loci (Glu-A3, Glu-B3, and Glu-D3). Due to the complexity of these chromosomal regions and the high sequence similarity between different LMW-GS genes, their organization and recombination characteristics are still incompletely understood. This study examined intralocus recombination at the Glu-3 loci in two recombinant inbred line (RIL) and one doubled haploid (DH) population, all segregating for the Glu-A3, Glu-B3, and Glu-D3 loci. The analysis was conducted using a gene marker system that consists of the amplification of the complete set of the LMW-GS genes and their visualization by capillary electrophoresis. Recombinant marker haplotypes were detected in all three populations with different recombination rates depending on the locus and the population. No recombination was observed between the amplicons representing i-type and s-type LMW-GS genes located, respectively, at the Glu-A3 and Glu-B3 loci, indicating tight linkage between these genes. Results of this study contribute to better understanding the genetic linkage and recombination between different LMW-GS genes, the structure of the Glu-3 loci, and the development of more specific molecular markers that better represent the genetic diversity of these loci. In this way, a more precise analysis of the contribution of various LMW-GSs to end-use quality of wheat may be achieved.
  相似文献   

3.
The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.  相似文献   

4.
The composition and quantity of high-molecular-weight glutenin subunits plays an important role in determining the bread-making quality of wheat. Molecular-genetic analysis of allelic composition of high-molecular-weight glutenin genes in 102 bread wheat cultivars and lines from different geographical regions was conducted. Three alleles at the Glu-A1 locus, nine alleles at the Glu-B1 locus, and two alleles at the Glu-D1 locus were identified. Among the investigated cultivars and lines, 21 were characterized by intracultivar polymorphism. High allelic variation of high-molecular-weight glutenin subunit genes was shown for the collection: 21 and 9 combinations were defined in monomorphic and polymorphic cultivars and lines, respectively. However, the major part of the collection (66.7%) contained four allelic combinations: Glu-A1b Glu-B1c Glu-D1d, Glu-A1b Glu-B1c Glu-D1-2a, Glu-A1a Glu-B1c Glu-D1d, and Glu-A1b Glu-B1c Glu-D1d/Glu-D1-2a. Fourteen cultivars of bread wheat were selected, and they were characterized by a favorable allelic composition of Glu-1 loci.  相似文献   

5.
In common wheat (Triticum aestivum L.), allelic variations of Glu-1 loci have important influences on grain end-use quality. The allelic variations in high molecular weight glutenin subunits (HMW-GSs) were identified in 151 hexaploid wheat varieties representing a historical trend in the cultivars introduced or released in Hebei province of China from the years 1970s to 2010s. Thirteen distinct alleles were detected for Glu-1. At Glu-A1, Glu-B1 and Glu-D1, we found that the most frequent alleles were the 1 (43.0%), 7+8 (64.9%), 2+12 (74.8%) alleles, respectively, in wheat varieties. Twenty two different HMW-GS compositions were observed in wheat. Twenty-five (16.6%) genotypes possessed the combination of subunits 1, 7+8, 2+12, 25 (16.6%) genotypes had subunit composition of 2*, 7+8, 2+12; 20 (13.2%) genotypes had subunit composition of null, 7+8, 2+12. The frequency of other subunit composition was less than 10%. The Glu-1 quality score greater than or equal to 9 accounted for 20.6% of the wheat varieties. The percentage of superior subunits (1 or 2* subunit at Glu-A1 locus; 7+8, 14+15 or 17+18 at Glu-B1 locus; 5+10 or 5+12 at Glu-D1 locus) was an upward trend over the last 40 years. The more different superior alleles correlated with good bread-making quality should be introduced for their usage in wheat improvement efforts.  相似文献   

6.
The allelic diversity of high-moleculat-weght glutenin subunits (H WIGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism index (polymorphism information content, PlC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.  相似文献   

7.
PCR was used to amplify low-molecular-weight (LMW) glutenin genes from the Glu-A3 loci of hexaploid wheat cultivars containing different Glu-A3 alleles. The complete coding sequence of one LMW glutenin gene was obtained for each of the seven alleles Glu-A3a to Glu-A3g. Chromosome assignment of PCR products using Chinese Spring nulli-tetrasomic lines confirmed the amplified products were from chromosome 1A. All sequences were classified as LMW-i-type genes based on the presence of an N-terminal isoleucine residue and eight cysteine residues located within the C-terminal domain of the predicted, mature amino acid sequence. All genes contained a single uninterrupted open reading frame, including the sequence from the Glu-A3e allele, for which no protein product has been identified. Comparison of LMW glutenin gene sequences obtained from different alleles showed a wide range of sequence identity between the genes, with between 1 and 37 single nucleotide polymorphisms and between one and five insertion/deletion events between genes from different alleles. Allele-specific PCR markers were designed based on the DNA polymorphisms identified between the LMW glutenin genes, and these markers were validated against a panel of cultivars containing different Glu-A3 alleles. This collection of markers represents a valuable resource for use in marker-assisted breeding to select for specific alleles of this important quality-determining locus in bread wheat.Communicated by P. Langridge  相似文献   

8.
The allelic compositions of high- and low-molecular-weight subunits of glutenins (HMW-GS and LMW-GS) among European spelt (Triticum spelta L.) and related hexaploid and tetraploid Triticum species were investigated by one- and two-dimensional polyacrylamide-gel electrophoresis (PAGE) and capillary electrophoresis (CE). A total of seven novel glutenin alleles (designated A1a*, B1d*, B1g*, B1f*, B1j*, D1a* at Glu-1 and A3h at the Glu-3 loci, respectively) in European spelt wheat were detected by SDS-PAGE, which were confirmed further by employing A-PAGE and CE methods. Particularly, two HMW-GS alleles, Glu-B1d* coding the subunits 6.1 and 22.1, and Glu-B1f* coding the subunits 13 and 22*, were found to occur in European spelt with frequencies of 32.34% and 5.11%, respectively. These two alleles were present in cultivated emmer (Triticum dicoccum), but they were not observed in bread wheat (Triticum aestivum L.). The allele Glu-B1g* coding for 13* and 19* subunits found in spelt wheat was also detected in club wheat (Triticum compactum L.). Additionally, two alleles coding for LMW-GS, Glu-A3h and Glu-B3d, occurred with high frequencies in spelt, club and cultivated emmer wheat, whereas these were not found or present with very low frequencies in bread wheat. Our results strongly support the secondary origin hypothesis, namely European spelt wheat originated from hybridization between cultivated emmer and club wheat. This is also confirmed experimentally by the artificial synthesis of spelt through crossing between old European emmer wheat, T. dicoccum and club wheat, T. compactum.Communicated by H.F. Linskens  相似文献   

9.
Low-molecular-weight glutenin subunits (LMW-GS) have great effect on wheat processing quality, but were numerous and difficult to dissect by SDS-PAGE. The development of functional markers may be the most effective way for a clear discrimination of different LMW-GS genes. In the present study, three different approaches were used to identify SNPs of different genes at Glu-D3 and Glu-B3 loci in bread wheat for the development of six STS markers (3 for Glu-D3 and 3 for Glu-B3 genes) that were validated with distinguished wheat cultivars. Firstly, seven LMW-GS gene sequences ( AY585350, AY585354, AY585355, AY585356, AY585349, AY585351 and AY585353 ) from Aegilops tauschii, the diploid donor of the D-genome of bread wheat, were chosen to design seven pairs of AS-PCR primers for Glu-D3 genes. By amplifying the corresponding genes from five bread wheat cultivars with different Glu-D3 alleles (a, b, c, d and e) and Ae. tauschii, a primer set, S13F2/S13R1, specific to the gene AY585356, was found to be positive to cultivars with alleles Glu-D3c and d. Nevertheless, the other five pairs of primers designed from AY585350, AY585349, AY585353, AY585354 and AY585355, respectively, did not produce specific PCR products to the cultivars tested. Secondly, all the PCR products from the five primer sets without specific characteristics were sequenced and an SNP from the gene AY585350 was detected in the cultivar Hartog, which resulted in the second STS marker S1F1/S1R3 specific to the allelic variant of AY585350. Thirdly, three Glu-D3 sequences (AB062851, AB062865 and AB062872) and three Glu-B3 sequences (AB062852, AB062853 and AB062860) defined by Ikeda et al. (2002) were chosen to query wheat EST and NR databases, and DNA markers were developed based on the putative SNPs among the sequences. Using this approach, four STS markers were developed and validated with 16-19 bread wheat cultivars. The primer set T1F4/T1R1 was also a Glu-D3 gene-specific marker for AB062872, while T2F2/T2R2, T5F3/T5R1 and T13F4/T13R3 were all Glu-B3 gene specific markers for AB062852, BF293671 and AY831800, respectively. The chromosomal locations of the six markers were verified by amplifying the genomic DNA of Ae. tauschii (DD), T. monococcum (AA) and T. turgidum (AABB) entries, as well as Chinese Spring and its group 1 chromosome nulli-tetrasomic lines. The results are useful to discriminate the corresponding Glu-D3 and Glu-B3 genes in wheat breeding programs.  相似文献   

10.
Polymorphisms between the coding sequences of high-molecular-weight (HMW) glutenin x-type genes at the Glu-1 locus were used to amplify Glu-1B x-type-specific PCR fragments. PCR analysis in a wheat cultivar subset carrying different Glu-1B x-type alleles resulted in PCR fragments that differed in size for Glu-B1-1d (B-x6) and non-Glu-B1-1d (B-x6) genotypes. Subsequent sequencing analysis revealed a 15-bp in-frame insertion in the coding regions of all Glu-B1-1d (B-x6) genotypes which allowed the development of a B-x6-specific PCR assay for high-throughput allele sizing by ion-pair reversed-phase high-performance liquid chromatography. The assay was validated in a set of 86 German wheat cultivars, and genotyping data unequivocally verified the presence of HMW glutenin subunits GLU-B1-1D (Bx-6) + GLU-B1-2A (By-8) by means of sodium dodecyl sulphate-polyacrylamide gel electrophoresis. These results demonstrate that the PCR assay can be applied for the detection and negative selection of the poor breadmaking quality Glu-B1-1d (B-x6) alleles in wheat breeding programs.  相似文献   

11.
The study is a continuation of investigation of prolamins in brown rust-resistant introgressive lines of common wheat, produced with participation of Triticum timopheeevi Zhuk. [1]. Two wheat lines with a substitution of the Glu-1 loci of T. timopheevi were identified. Line 684 had high-molecular-weight glutenin subunits encoded by 1Ax, as well as by 1Ay gene, which was silent in commercial lines. It was demonstrated that line 684 could serve as a source of the Glu-A t 1 locus. Line 186 carried the Glu-B1/Glu-G1 substitution. Comparative analysis of storage proteins from the introgression lines of common wheat Triticum aestivum L. with those from parental forms demonstrated polymorphism among the lines, resulted from natural varietal polymorphism, and introgression of the Glu-3 and Gli-1 loci from the genome of T. timopheevi.  相似文献   

12.
The glutenin and gliadin proteins of wild emmer wheat, Triticum turgidum L. var. dicoccoides, have potential for improvement of durum wheat (T. turgidum L. var. durum) quality. The objective of this study was to determine the chromosomes controlling the high molecular weight (HMW) glutenin subunits and gliadin proteins present in three T. turgidum var. dicoccoides accessions (Israel-A, PI-481521, and PI-478742), which were used as chromosome donors in Langdon durum- T. turgidum var. dicoccoides (LDN-DIC) chromosome substitution lines. The three T. turgidum var. dicoccoides accessions, their respective LDN-DIC substitution lines, and a number of controls with known HMW glutenin subunits were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), urea/SDS-PAGE, and acid polyacrylamide gel electrophoresis (A-PAGE). The results revealed that all three T. turgidum var. dicoccoides accessions possess Glu-A1 alleles that are the same as or similar to those reported previously. However, each T. turgidum var. dicoccoides accession had a unique Glu-B1 allele. PI-478742 had an unusual 1Bx subunit, which had mobility slightly slower than the 1Ax subunit in 12% SDS-PAGE gels. The subunits controlled by chromosome 1B of PI-481521 were slightly faster in mobility than the subunits of the Glu-B1n allele, and the 1By subunit was identified as band 8. The 1B subunits of Israel-A had similar mobility to subunits 14 and 16. The new Glu-B1 alleles were designated as Glu-B1be in Israel-A, Glu-B1bf in PI-481521, and Glu-B1bg in PI-478742. Results from A-PAGE revealed that PI-481521, PI-478742, and Israel-A had eight, 12, and nine unique gliadin bands, respectively, that were assigned to specific chromosomes. The identified glutenin subunits and gliadin proteins in the LDN-DIC substitution lines provide the basis for evaluating their effects on end-use quality, and they are also useful biochemical markers for identifying specific chromosomes or chromosome segments of T. turgidum var. dicoccoides.Communicated by B. Friebe  相似文献   

13.
小麦新品种(系)Glu-1位点等位基因变异研究   总被引:3,自引:1,他引:2  
应用SDS-PAGE技术分析了40份小麦新品种(系)的高分子量麦谷蛋白亚基等位基因变异。在Glu-1位点共检测到10种变异类型,其中Glu-Al位点有3种类型:Null、1、26 ,Glu-B1位点有5种类型:7 8、7 9、14 15、7、17 18,Glu-D1位点有2种类型:2 12、5 10;Null(54.3%)、7 8(51.4%)和2 12(62.9%)分别是Glu-Al、Glu-B1和Glu-D1位点上的主要亚基变异类型。另外,在2份材料的Glu-B1和Glu-D1位点各检测到1个新的亚基,分别命名为1By8.1和1Dx5^ 。Glu-1位点的Nei‘s遗传变异指数平均为0,5648,Glu-B1的遗传多样性最高,Glu-D1最低。供试小麦材料Glu-1位点的HMW-GS组合共有17种类型,以(Null,7 8,2 12)组合为主要类型,占31.4%;有9种亚基组合类型分别只在1份材料中出现,占26.1%。结果表明,这些小麦新品种(系)存在着丰富的亚基组合类型。  相似文献   

14.
Wheat bread-making quality is closely correlated with composition and quantity of gluten proteins, in particular with high-molecular weight (HMW) glutenin subunits encoded by the Glu-1 genes. A multiplex polymerase chain reaction (PCR) method was developed to identify the allele composition of HMW glutenin complex Glu-1 loci (Glu-A1, Glu-B1 and Glu-D1) in common wheat genotypes. The study of multiplex PCR to obtain a well-balanced set of amplicons involved examination of various combinations of selected primer sets and/or thermal cycling conditions. One to three simultaneously amplified DNA fragments of HMW glutenin Glu-1 genes were separated by agarose slab-gel electrophoresis and differences between Ax1, Ax2* and Axnull genes of Glu-A1 loci, Bx6, Bx7 and Bx17 of Glu-B1, and Dx2, Dx5 and Dy10 genes of Glu-D1 loci were revealed. A complete agreement was found in identification of HMW glutenin subunits by both multiplex PCR analysis and SDS-PAGE for seventy-six Polish cultivars/strains of both spring and winter common wheat. Rapid identification of molecular markers of Glu-1 alleles by multiplex PCR can be an efficient alternative to the standard separation procedure for early selection of useful wheat genotypes with good bread-making quality.  相似文献   

15.
西南冬麦区地方品种HMW-GS组成遗传多样性研究   总被引:2,自引:0,他引:2  
采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)对西南冬麦区(云南、贵州、四川)3个省份共计560份小麦地方品种的高分子量谷蛋白亚基(HMW-GS)组成进行了研究。结果表明:Glu-1位点共有22种等位基因,其中Glu-A1位点4种、Glu-B1位点11种、Glu-D1位点7种;亚基null、7 8和2 12在各自位点的频率最高,分别为89.64%、68.21%和96.43%。亚基组成类型共有46种,以null/7 8/2 12和null/7 9/2 12为主,频率分别为50.89%和11.79%。在这些材料中筛选出一些含有1、2*、17 18、14 15、5 10等优质亚基的材料,其中有52份材料含有优质亚基组合。  相似文献   

16.
Genetic diversity at Gli-1, Gli-2 and Glu-1 loci was investigated in 89 Sichuan wheat ( Triticum aestivum L.) landraces by using acid polyacrylamide gel electrophoresis (APAGE) and SDS-PAGE. In these landraces, a total of 32 gliadin and 3 high-molecular-weight (HMW) glutenin patterns were observed. In total, 14, 15 and 5 alleles were identified at Gli-1, Gli-2 and Glu-1, respectively. At each locus, the alleles in higher frequency were Gli-A1a (89%), Gli-B1 h (46%), Gli-D1a (65%), Gli-A2a (64%), Gli-B2j (45%), Gli-D2 a (48%), Glu-A1c (99%), Glu-B1b (99%) and Glu-D1a (100%). The Nei's genetic variation index (H) of Sichuan wheat landraces was 0.3706, varying from 0 to 0.7087. The highest genetic diversity was found at Gli-B2 locus, while the lowest was found at Glu-D1 . The genetic diversity at Gli loci was higher than that of Glu-1 loci among these landraces, but it was much lower than that of modern wheat cultivars. These results indicated a narrow genetic base of Sichuan wheat landraces. In this study, “Chengdu-guangtou” had the identical gliadin and HMW-glutenin patterns with “Chinese Spring”, further supporting the proposal that “Chinese Spring” is a strain of “Chengdu-guangtou”.  相似文献   

17.
One hundred and seventy two wheat varieties including twenty-five durum wheat cultivars were evaluated for high molecular weight glutenin subunit (HMW-GS) composition using SDS-PAGE. The relationship between HMW-GS and sedimentation tests for dough strength was studied. Three alleles were present at the Glu-A1 locus, eight at Glu-B1 and two at Glu-D1 in bread wheat. The data indicated the prevalence of the Glu-A1b allele (63.5%) at the Glu-A1 and Glu-D1a (71.4%) at Glu-D1 loci. Three alleles, namely Glu-B1b (30.61%), Glu-B1c (25.85%) and Glu-B1i (34.00%) represented about 90% of the alleles at Glu-B1 locus. The combination of Glu-A1b, Glu-B1i and Glu-D1d alleles exhibited highest dough strength as measured by sedimentation value in comparison to other combinations (p<0.001). However, this combination was present only in 7% of the samples evaluated. In durum wheat, the null allele (Glu-A1c) was observed more frequently (76%) than the Glu-A1b allele (24%). Glu-B1f and Glu-B1e alleles represented equally (32% each). Protein subunits 13+16 and 6+8 were found correlated positively (p<0.05) with improved dough strength as compared to subunit 20 in durum wheat. This information can be a valuable reference for designing breeding programme for the improvement of bread and pasta making quality of bread and durum wheats, respectively in India.  相似文献   

18.
Three low-molecular-weight (LMW) glutenin-like genes (designated as Ssy1, Ssy2, and Ssy3) from Secale sylvestre Host were isolated and characterized. The three genes consist of a predicted highly conservative signal peptide with 20 amino acids, a short N-terminal region with 13 amino acids, a highly variable repetitive domain and a less variable C-terminal domain. The deduced amino acid sequences of the three genes were the LMW-m type due to a methionine residue at the N-terminus. The phylogenetic analysis indicated that the prolamin genes could be perfectly clustered into five groups, including HMW-GS, LMW-GS, α/β-, γ-, and κ-prolamin. The LMW glutenin-like genes of S. sylvestre were more orthologous with the LMW-GS genes of wheat and B hordein genes of barley, which also had been confirmed by the homology analysis with the LMW-GS of wheat at Glu-A3, Glu-B3, and Glu-D3 loci. These results indicated that a chromosome locus (designated as Glu-R3) might be located on the R genome of S. sylvestre with the functions similar to the Glu-3 locus in wheat and its related species.  相似文献   

19.
Molecular markers were used to identify the allele/gene composition of complex loci Glu-A1 and Glu-B1 of high-molecular-weight (HMW) glutenin subunits in triticale cultivars. Forty-six Polish cultivars of both winter and spring triticale were analysed with 7 PCR-based markers. Amplified DNA fragments of HMW glutenin Glu-1 genes were separated by agarose slab-gel electrophoresis. Differences between all 3 alleles at the locus Glu-A1 [Glu-A1a (encoding Ax1), 1b (Ax2*), and 1c (AxNull)], 4 alleles at Glu-B1-1 [Glu-B1-1a (Bx7), 1b (Bx7*), 1d (Bx6), 1ac (Bx6.8)], and 5 alleles at Glu-B1-2 [Glu-B1-2a (By8), 2b (By9), 2o (By8*), 2s (By18*), and 2z (By20*)] were revealed. In total, 16 allele combinations were observed. Molecular markers are particularly helpful in distinguishing the wheat Glu-A1a and Glu-A1b alleles from the rye Glu-R1a and Glu-R1b alleles in triticale genotypes, respectively, as well as subunits Bx7 from Bx7* and By8 from By8*, which could not be distinguished by SDS-PAGE. Novel glutenin subunits By18* and By20* (unique to triticale) were identified. HMW glutenin subunit combinations of Polish triticale cultivars, earlier identified by SDS-PAGE analyses, were verified by PCR-based DNA markers. Rapid identification of wheat Glu-1 alleles by molecular markers can be an efficient alternative to the standard separation procedure for early selection of useful triticale genotypes with good bread-making quality.  相似文献   

20.
In an attempt to improve the bread-making quality within hexaploid wheat by elaborating novel high-molecular weight glutenin subunits (HMW-GS) combinations useful in wheat-breeding programmes, a 1A chromosome fragment carrying the Glu-A1 locus encoding the subunit Ax2*, was translocated to the long arm of chromosome 1D. The partially isohomoeoallelic line, designated RR239, had a meiotic behaviour as regular as cv. Courtot. It was characterised using genomic in situ hybridization and microsatellite markers as well as biochemical and proteomic approaches. The translocated 1D chromosome had an interstitial 1AL segment representing in average 30% of the recombinant arm length that was confirmed by molecular analysis. The genetic length of the removed segment in chromosome 1DL was estimated to be at least 51 cM, and that of the interstitial 1AL translocation to be at least 33 cM. Proteome analysis performed on total endosperm proteins revealed variation in amounts, 8 spots and 1 spot being up- and downregulated, respectively. Quantitative variations in HMW-GS were observed for the Glu-A1 (Ax2*) and Glu-B1 (Bx7 + By8) loci in response to duplication of the Glu-A1 locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号