首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid rafts are microdomains of the phospholipid bilayer, proposed to form semi-stable "islands" that act as a platform for several important cellular processes; major classes of raft-resident proteins include signalling proteins and glycosylphosphatidylinositol (GPI)-anchored proteins. Proteomic studies into lipid rafts have been mainly carried out in mammalian cell lines and single cell organisms. The nematode Caenorhabditis elegans, the model organism with a well-defined developmental profile, is ideally suited for the study of this subcellular locale in a complex developmental context. A study of the lipid raft proteome of C. elegans is presented here. A total of 44 proteins were identified from the lipid raft fraction using geLC-MS/MS, of which 40 have been determined to be likely raft proteins after analysis of predicted functions. Prediction of GPI-anchoring of the proteins found 21 to be potentially modified in this way, two of which were experimentally confirmed to be GPI-anchored. This work is the first reported study of the lipid raft proteome in C. elegans. The results show that raft proteins, including numerous GPI-anchored proteins, may have a variety of potentially important roles within the nematode, and will hopefully lead to C. elegans becoming a useful model for the study of lipid rafts.  相似文献   

2.
3.
Surface proteins play important pathophysiological roles in health and disease, and accumulating proteomics-based studies suggest that several "non-membrane" proteins are sorted to the cell surface by unconventional mechanisms. Importantly, these proteins may comprise attractive therapeutic targets and novel disease markers for colon cancer. To perform a proteomics-based inventory of these so-called "anchorless" surface proteins, intact colon adenocarcinoma SW480 cells were labeled with membrane-impermeable biotin after which only soluble biotinylated proteins were isolated and identified by nanoLC-MS/MS. Computer-assisted analysis predicted that only 9 of the 97 identified surface-exposed proteins have predicted secretory signal peptides, whereas 2 other proteins have a putative transmembrane segment. Of the 9 proteins with putative signal peptides, 1 was predicted to be retained at the cell surface by a GPI-anchor, whereas 5 other proteins contained an ER-retention motif (KDEL) that should prevent them from being sorted to the cell surface. The remaining 86 soluble "surface" proteins lack known export signals and the possibility that these proteins are candidate substrates of non-classical transporters or exported by unconventional mechanisms is discussed. Alternatively, the large number of "intracellular" and ER-resident proteins may imply that biotinylation approaches are not only specific for surface proteins, but also biased against a certain subset of non-surface proteins. This underscores the importance of post-proteomic verification of proteomics-based inventories on surface-exposed proteins, which eventually should reveal to which extent non-classical export and retention mechanisms contribute to the sorting of "anchorless" proteins to the surface of colon tumor cells.  相似文献   

4.
Ubiquitin in health and disease.   总被引:4,自引:0,他引:4  
Studies in recent years have shown that ubiquitin has increasingly important functions in eukaryotic cells; roles which were previously not suspected in healthy and diseased cells. The interplay between molecular pathological and molecular cell biological findings has indicated that ubiquitin may be pivotal in the cell stress response in chronic degenerative and viral diseases. Furthermore, the studies have led to the notion that ubiquitination may not only serve as a signal for nonlysosomal protein degradation but may be a unifying covalent protein modification for the major intracellular protein catabolic systems; these can act to identify proteins for cytosolic proteinases or direct intact and fragmented proteins into the lysosome system for breakdown to amino acids. This unifying role could explain why ubiquitin is restricted to eukaryotic cells, which possess extensive endomembrane systems in addition to a nuclear envelope. Protein ubiquitination is a feature of most filamentous inclusions and certain other intracellular conglomerates that are found in some degenerative and viral diseases. The detection of ubiquitin-protein conjugates is not of great diagnostic importance in these diseases. Protein ubiquitination is not only essential for the normal physiological turnover of proteins but appears to have been adapted as part of an intracellular surveillance system that can be activated by altered, damaged, or foreign proteins and organelles. The purpose of this system is to isolate and eliminate these noxious structures from the cell: as a cytoprotective mechanism this appears to have evolved in the cell akin perhaps to an 'intracellular immune system'. Other heat shock proteins such as hsp 70 may be involved in this process. It is apparent that ubiquitin has a role in embryonic development. Protein ubiquitination is presumably involved in the reorganisation of cytoplasm that accompanies cell differentiation. Ubiquitin is also necessary for the gross intracellular degradative processes which are consequent upon programmed cell death. Cell elimination is of key importance for a number of developmental morphogenetic changes. An understanding of the molecular details of these processes will no doubt provide further insights into the wide ranging roles of ubiquitin in the life process. As it says in the book 'Ubiquitin'; there is no doubt that ubiquitin is a 'lucky' protein. It is lucky in many ways: lucky for scientific progress, lucky for biomedical scientists and lucky for life! If you have not already done so, why don't you get lucky and look for a role for ubiquitin in your experimental system. As Avram Hershko has said "there is plenty to go round"!  相似文献   

5.
Neurons are highly polarized specialized cells. Neuronal integrity and functional roles are critically dependent on dendritic architecture and synaptic structure, function and plasticity. The cadherins are glycosylated transmembrane proteins that form cell adhesion complexes in various tissues. They are associated with a group of cytosolic proteins, the catenins. While the functional roles of the complex have been extensively investigates in non-neuronal cells, it is becoming increasingly clear that components of the complex have critical roles in regulating dendritic and synaptic architecture, function and plasticity in neurons. Consistent with these functional roles, aberrations in components of the complex have been implicated in a variety of neurodevelopmental disorders. In this review, we discuss the roles of the classical cadherins and catenins in various aspects of dendrite and synapse architecture and function and their relevance to human neurological disorders. Cadherins are glycosylated transmembrane proteins that were initially identified as Ca2+-dependent cell adhesion molecules. They are present on plasma membrane of a variety of cell types from primitive metazoans to humans. In the past several years, it has become clear that in addition to providing mechanical adhesion between cells, cadherins play integral roles in tissue morphogenesis and homeostasis. The cadherin family is composed of more than 100 members and classified into several subfamilies, including classical cadherins and protocadherins. Several of these cadherin family members have been implicated in various aspects of neuronal development and function.1-3 The classical cadherins are associated with a group of cytosolic proteins, collectively called the catenins. While the functional roles of the cadherin-catenin cell adhesion complex have been extensively investigated in epithelial cells, it is now clear that components of the complex are well expressed in central neurons at different stages during development.4,5 Recent exciting studies have shed some light on the functional roles of cadherins and catenins in central neurons. In this review, we will provide a brief overview of the cadherin superfamily, describe cadherin family members expressed in central neurons, cadherin-catenin complexes in central neurons and then focus on role of the cadherin-catenin complex in dendrite morphogenesis and synapse morphogenesis, function and plasticity. The final section is dedicated to discussion of the emerging list of neural disorders linked to cadherins and catenins. While the roles of cadherins and catenins have been examined in several different types of neurons, the focus of this review is their role in mammalian central neurons, particularly those of the cortex and hippocampus. Accompanying this review is a series of excellent reviews targeting the roles of cadherins and protocadherins in other aspects of neural development.  相似文献   

6.
Cytokines that signal through the leukemia inhibitory factor (LIF) receptor, such as LIF and ciliary neuronotrophic factor, have a wide range of roles within both the developing and mature nervous system. They play a vital role in the differentiation of neural precursor cells into astrocytes and can prevent or promote neuronal differentiation. One of the conundrums regarding signalling through the LIF receptor is how it can have multiple, often conflicting roles in different cell types, such as enhancing the differentiation of astrocytes while inhibiting the differentiation of some neuronal cells. Factors that can modulate signal transduction downstream of cytokine signalling, such as "suppressor of cytokine signalling" proteins, which inhibit the JAK/STAT but not the mitogen-activated protein kinase pathway, may therefore play an important role in determining how a given cell will respond to cytokine signalling. This review discusses the general effects of cytokine signalling within the nervous system. Special emphasis is placed on differentiation of neural precursor cells and the role that regulation of cytokine signalling may play in how a given precursor cell responds to cytokine stimulation.  相似文献   

7.
A wide range of proteins of cellular and viral origin have been shown to be modified covalently by long-chain fatty acids. Recent studies have revealed at least two distinct types of protein fatty acylation which involve different fatty acyltransferases. The abundant fatty acid, palmitate, is incorporated post-translationally through a thiol ester linkage into a variety of cell surface glycoproteins and non-glycosylated intracellular proteins. In contrast, the rare fatty acid, myristate, is incorporated co-translationally through an amide linkage into numerous intracellular proteins. Identification of proteins that contain covalent fatty acids has revealed that this modification is common to a broad array of proteins that play important roles in transmembrane regulatory pathways. For many of these proteins, the fatty acid moiety appears to play an important role in directing the polypeptide to the appropriate membrane and in mediating protein-protein interactions within the membrane. This review will summarize recent studies that define different pathways for protein fatty acylation and will consider the potential functions for this unique covalent modification of proteins.  相似文献   

8.
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.  相似文献   

9.
细胞膜蛋白是细胞的重要组成部分,作为细胞的"门铃"与"门户",参与细胞内外物质交换、信息转换、细胞生长发育、细胞迁移以及免疫应答等重要生理活动.为鉴定鼻咽癌转移相关膜蛋白,运用差速离心联合双水相方法分离纯化鼻咽癌高转移细胞5-8F的细胞膜,SDS-PAGE分离膜蛋白,液相色谱/电喷雾串联质谱分析(LC-MS/MS)结合生物信息学分析鉴定出316种非冗余蛋白质,其中152种(48.5%)被注释为膜蛋白或膜相关蛋白.通过肿瘤差异蛋白质组数据库(dbDEPD)搜索,发现在114个膜蛋白中有49种膜蛋白与其它肿瘤的发生发展密切相关,其中21个膜蛋白与肿瘤转移相关.进一步分析发现膜蛋白CD104、VDAC2、CD298和SLC25A3与同属头颈部肿瘤的口腔癌转移相关,提示这4个膜蛋白也可能是鼻咽癌潜在的转移相关蛋白.研究结果提供了一个鼻咽癌细胞5-8F包含中高丰度膜蛋白的数据库,为进一步研究头颈部肿瘤鼻咽癌癌变分子机理积累了有价值的资料.  相似文献   

10.
Gene inactivation studies of mammalian histone and DNA-modifying proteins have demonstrated a role for many such proteins in embryonic development. Post-implantation embryonic lethality implies a role for epigenetic factors in differentiation and in development of specific lineages or tissues. However a handful of chromatin-modifying enzymes have been found to be required in pre- or peri-implantation embryos. This is significant as implantation is the time when inner cell mass cells of the blastocyst exit pluripotency and begin to commit to form the various lineages that will eventually form the adult animal. These observations indicate a critical role for chromatin-modifying proteins in the earliest lineage decisions of mammalian development, and/or in the formation of the first embryonic cell types. Recent work has shown that the two major class I histone deacetylase-containing co-repressor complexes, the NuRD and Sin3 complexes, are both required at peri-implantation stages of mouse development, demonstrating the importance of histone deacetylation in cell fate decisions. Over the past 10 years both genetic and biochemical studies have revealed surprisingly divergent roles for these two co-repressors in mammalian cells. In this review we will summarise the evidence that the two major class I histone deacetylase complexes in mammalian cells, the NuRD and Sin3 complexes, play important roles in distinct aspects of embryonic development.  相似文献   

11.
12.
13.
Mechanical forces play pivotal roles in regulating cell shape, function, and fate. Key players that govern the mechanobiological interplay are the mechanosensitive proteins found on cell membranes and in cytoskeleton. Their unique nanomechanics can be interrogated using single-molecule tweezers, which can apply controlled forces to the proteins and simultaneously measure the ensuing structural changes. Breakthroughs in high-resolution tweezers have enabled the routine monitoring of nanometer-scale, millisecond dynamics as a function of force. Undoubtedly, the advancement of structural biology will be further fueled by integrating static atomic-resolution structures and their dynamic changes and interactions observed with the force application techniques. In this minireview, we will introduce the general principles of single-molecule tweezers and their recent applications to the studies of force-bearing proteins, including the synaptic proteins that need to be categorized as mechanosensitive in a broad sense. We anticipate that the impact of nano-precision approaches in mechanobiology research will continue to grow in the future.  相似文献   

14.
The role of BEACH proteins in Dictyostelium   总被引:3,自引:1,他引:2  
The BEACH family of proteins is a novel group of proteins with diverse roles in eukaryotic cells. The identifying feature of these proteins is the BEACH domain named after the founding members of this family, the mouse beige and the human Chediak–Higashi syndrome proteins. Although all BEACH proteins share a similar structural organization, they appear to have very distinct cellular roles, ranging from lysosomal traffic to apoptosis and cytokinesis. Very little is currently known about the function of most of these proteins, few binding-partner proteins have been identified, and no molecular mechanism for any of these proteins has been discovered. Thus, it is important to establish good model systems for the study of these novel proteins. Dictyostelium contains six BEACH proteins that can be classified into four subclasses. Two of them, LvsA and LvsB, have clearly distinct roles in the cell. LvsA is localized on the contractile vacuole membrane and is essential for cytokinesis and osmoregulation. LvsB is most similar in sequence to the mammalian beige/Chediak–Higashi syndrome proteins and shares with them a common function in lysosomal trafficking. Structural and functional analysis of these proteins in Dictyostelium will help elucidate the function of this enigmatic novel family of proteins .  相似文献   

15.
Autophagy is an intracellular degradation process responsible for the clearance of most long-lived proteins and organelles. Cytoplasmic components are enclosed by double-membrane autophagosomes, which subsequently fuse with lysosomes for degradation. Autophagy dysfunction may contribute to the pathology of various neurodegenerative disorders, which manifest abnormal protein accumulation. As autophagy induction enhances the clearance of aggregate-prone intracytoplasmic proteins that cause neurodegeneration (like mutant huntingtin, tau and ataxin 3) and confers cytoprotective roles in cell and animal models, upregulating autophagy may be a tractable therapeutic strategy for diseases caused by such proteins. Here, we will review the molecular machinery of autophagy and its role in neurodegenerative diseases. Drugs and associated signalling pathways that may be targeted for pharmacological induction of autophagy will also be discussed.  相似文献   

16.
The generation of a polarized microtubule organization is critically important for proper cellular functions, such as cell division, differentiation and migration. Microtubules themselves are highly dynamic structures, and this dynamic property is temporally and spatially regulated within cells, especially at their plus ends. To explain how microtubules set up and make contacts with cellular structures, a "search-and-capture" mechanism has been proposed, in which the microtubule plus ends dynamically search for and capture specific sites, such as mitotic kinetochores and cell cortex. To date, several classes of proteins have been shown to be associated with microtubule plus ends in a wide range of organisms from fungi to humans and to play critical roles in the "search-and-capture" mechanism. In this review, we overview our current understanding of the "plus-end-binding proteins" (+TIPs), including APC (adenomatous polyposis coli) tumor suppressor protein, cytoplasmic linker proteins (CLIPs), CLIP-associating proteins (CLASPs), cytoplasmic dynein/dynactin, and EB1, an APC-interacting protein.  相似文献   

17.
The protein kinases ATM and DNA-PKcs play critical roles in the cellular response to DNA double strand breaks (DSBs). ATM and DNA-PKcs are activated in response to DSBs and play several important roles in propagation of the damage signal and for the repair of DNA damage. Recent work from several groups, including ours, has focused on studying the dynamics of each of these proteins at DSBs and the requirements and factors which play a role(s) in this process. The use of live cell imaging of fluorescently-tagged ATM and DNA-PKcs has allowed us to study the real-time response of these proteins to laser-generated DNA damage in vivo. Here, we will extensively discuss the behavior of the ATM and DNA-PKcs proteins at DSB sites.Key words: ATM, DNA-PKcs, DNA double strand breaks, autophosphorylation, live cell imaging  相似文献   

18.
Connexin-43 (Cx43), the most ubiquitously expressed vertebrate gap junction protein, has been shown to interact directly with Zonula Occludens-1 (ZO-1). Although several potential functions have been proposed for the ZO-1/Cx43 interaction, the role that ZO-1 and other Cx43-interacting partners play in the regulation of Cx43 trafficking, assembly, gating and turnover are not well understood. We believed a thorough analysis and classification of other Cx43-interacting proteins might help us to understand and better test these roles. We approached this question by utilizing Tandem Mass Spectrometry (MS/MS) analysis to identify proteins from normal rat kidney whole cell lysates that could interact with the C-terminal region of Cx43. Comparison against protein sequence databases identified 19 probable protein matches, including kinases, phosphatases, membrane receptors, cell signaling molecules and scaffolding proteins. We have further characterized some of these interacting proteins, including Zonula Occludens-2 (ZO-2), via western blotting and "pull down" experiments. Further in vitro/in vivo analysis of these interacting proteins will help in our understanding of the global role of connexins in regulating development, cell metabolism and growth.  相似文献   

19.
The RLK/Pelle class of proteins kinases is composed of over 600 members in Arabidopsis. Many of the proteins in this family are receptor-like kinases (RLK), while others have lost their extracellular domains and are found as cytoplasmic kinases. Proteins in this family that are RLKs have a variety of extracellular domains that drive function in a large number of processes, from cell wall interactions to disease resistance to developmental control. This review will briefly cover the major subclasses of RLK/Pelle proteins and their roles. In addition, two specific groups on RLKs will be discussed in detail, relating recent findings in Arabidopsis and how well these conclusions have been able to be translated to agronomically important species. Finally, some details on kinase activity and signal transduction will be addressed, along with the mystery of RLK/Pelle members lacking kinase enzymatic activity.  相似文献   

20.
This paper discusses the way in which serum deprivation affects the turnover of nascent or newly synthesised proteins in mammalian cells. A theoretical treatment of their turnover relative to changes in rate of protein synthesis and the turnover of existing or "resident" proteins is presented. Previous experimental work has not seriously addressed this question because the pulses of radiolabelling of proteins have been too long to identify the very-fast turnover population (Wheatley et al., 1980; Bohley, 1987). Logically one would expect cell growth rate to be regulated by the rate at which new proteins become incorporated into the cell within the first 30 min of their existence. This requires their successful integration at what we will refer to as the "growing point", recognizing that at any time there may be thousands of such sites. Growth is a simple term betraying the complexity of the processes involved--synthesis, processing, sorting, targeting, and stabilization of macromolecules, and their successful integration into functional assemblies at appropriate locations. Turnover of the truly short-lived, very-fast turnover proteins at the "growing point" is affected by serum adjustment, but it is not the only change since synthetic rate quickly responds, as also does the turnover rate of long-lived proteins. Our theoretical discussion will relate to recent findings in 3T3 and HeLa cell cultures after serum modulation, lines with quite different dependencies on serum growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号