首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of Rhizophora mangle litter production and decomposition were studied in a tropical coastal lagoon on the Gulf of Mexico in Veracruz, Mexico over a year (October 2002–October 2003). This region is characterized by three seasons: northerly winds (called ‘nortes’), dry, and rainy. Annual litter production (1116 g m−2) followed a seasonal pattern with leaf litter as the main fraction (70%) with two peaks in the dry and one in the rainy season. Leaf decomposition was evaluated with two types of litter bag in each season: fine mesh (1×1 mm) and coarse mesh (3×7 mm). Decomposition data were adjusted to a single negative exponential model. The results indicated faster decomposition rates in the coarse litter bag and significant differences among seasons. However these differences occurred after the 60th day of decomposition, indicating that leaching and microbial action were responsible for more than 50% of mass loss. After this period, the effects of aquatic invertebrates were evident but depended on climatic conditions. In the rainy season, the gastropod Neritina reclivata was associated with increasing leaf decomposition rate. In the ‘nortes’ season, the effect of aquatic invertebrates was smaller, and there were no differences in the decay constants calculated for the two litter bag types. High litter production represents an important input of organic matter which, through decomposition, may represent an important source of C, N, and P in this aquatic system.  相似文献   

2.
To assess the effect of water depth on the decomposition process, I measured the losses in dry mass of the above- and belowground materials ofCarex utriculata andNuphar luteum ssp.potysepalum as well as cellulose (Whatman filter paper) in the top 10 cm of sediment/soil in a subalpine marsh. Samples were examined by the litter bag technique at three flooding levels (0 to 5, 60, and 100 cm water depth). Over a 374-d period, the % mass losses of cellulose,Carex leaves and roots, andNuphar leaves and rhizomes ranged from 98.5 to 99.0, 74.8 to 81.8, 36.3 to 44.9, 95.8 to 97.7, and 78.4 to 91.5%, respectively. Rates for cellulose decay in this study were much higher than for samples from other wetlands; this difference resulted from the location of the litter bag (in the top 10 cm of soilvs in the water column). Water depth significantly affected the decomposition ofCarex roots andNuphar rhizomes. The rate of loss for K was highest in all tissues ofCarex andNuphar, followed by Na inCarex and P inNuphar. N and Ca loss rates generally were low. The C/N ratio tended to converge to a common value over the long term. This convergence has an important implication in the paleoecological interpretation of the C/N ratio change in sediment; i.e., this ratio shift in the sediment core results from a change in the environment, rather than the source material.  相似文献   

3.
The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q10?q) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q10?q=2.1 ± 0.2; more resistant Q10?q=3.8 ± 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q10?q=2.3; more resistant Q10?q=3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross‐site, field litter bag decomposition study (labile Q10?q=3.3 ± 0.2; resistant Q10?q=4.9 ± 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q10?q=2.4 ± 0.3) was greater than that for undisturbed grassland soils (Q10?q=1.7 ± 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO2. Our results indicate that future losses of litter and soil C may be even greater than previously supposed.  相似文献   

4.
Near-infrared reflectance spectroscopy (NIRS) has been widely applied as a holistic tool to investigate decomposition processes in terrestrial ecosystems. The objectives of this research were to determine the potential of NIRS to predict (1) the halophytic litter chemistry (i.e., carbon and nitrogen content) during decomposition, and (2) the stage of decomposition of halophytic litter. Decomposition experiments were conducted in the laboratory with microcosms placed under a wide range of physical characteristics and in the field with litterbags located along the elevation gradient (i.e., low to upper marsh). Microcosm experiments were used to calibrate the predictive equations. These calibration equations were then applied to the field data to test their capacity to predict %C, %N, and litter mass loss (LML). NIRS can be successfully applied to predict chemical composition of halophyte litter during decomposition processes. We hypothesized that the use of litterbags in the field might lead to a 20–40% overestimation of the decay rate as fine organic debris are lost through the meshes of the litterbags. NIRS can be used as a fast and nondestructive method to more accurately predict decay rates, and thus microbial consumption in aquatic environments.  相似文献   

5.
Elevated CO2 may affect litter quality of plants, and subsequently C and N cycling in terrestrial ecosystems, but changes in litter quality associated with elevated CO2 are poorly known. Abscised leaf litter of two oak species (Quercus cerris L. and Q. pubescens Willd.) exposed to long-term elevated CO2 around a natural CO2 spring in Tuscany (Italy) was used to study the impact of increasing concentration of atmospheric CO2 on litter quality and C and N turnover rates in a Mediterranean-type ecosystem. Litter samples were collected in an area with elevated CO2 (>500 ppm) and in an area with ambient CO2 concentration (360 ppm). Leaf samples were analysed for concentrations of total C, N, lignin, cellulose, acid detergent residue (ADR) and polyphenol. The decomposition rate of litter was studied using a litter bag experiment (12 months) and laboratory incubations (3 months). In the laboratory incubations, N mineralization in litter samples was measured as well (125 days). Litter quality was expressed in terms of chemical composition and element ratios. None of the litter quality parameters was affected by elevated CO2 for the two Quercus species. Remaining mass in Q. cerris and Q. pubescens litter from elevated CO2 was similar to that from ambient conditions. C mineralization in Q. pubescens litter from elevated CO2 was lower than that from ambient CO2, but the difference was insignificant. This effect was not observed for Q. cerris. N mineralization was higher from litter grown at elevated CO2, but this difference disappeared at the end of the incubation. Litter of Q. pubescens had a higher quality than Q. cerris, and indeed mineralized more rapidly in the laboratory, but not under field conditions.  相似文献   

6.
Effects of flooding on leaf litter decomposition in microcosms   总被引:3,自引:0,他引:3  
Frank P. Day Jr. 《Oecologia》1983,56(2-3):180-184
Summary The effects of hydroperiod on decomposition rates of senescent Acer rubrum leaves were tested in microcosms in a controlled laboratory environment. Microcosm treatments included continuously flooded, continuously unflooded, and fluctuating hydroperiods. All flooding treatments promoted decomposition but variations in hydroperiod had no significant effects. A leaching experiment indicated the higher decay rates under flooded conditions were primarily due to high leaching losses from soaking. Unlike nutrient dynamics in the field, where net accumulation occurs, nitrogen and phosphorus in the litter in the microcosms exhibited net losses. The major external inputs which provide a source of nitrogen and phosphorus for immobilization in the field were lacking in the microcosms. Calcium, magnesium, and potassium exhibited net losses except for calcium in the unflooded microcosms. The microcosm results demonstrated the importance of external inputs to litter nutrient relations.  相似文献   

7.
Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter decomposition (P<0.05). The intent of this meta-analysis was to improve our understanding of the overall effects of UV-B on litter decomposition.  相似文献   

8.
Decomposition of Juglans regia leaves was studied in fine and coarse mesh bags in a permanent mountain stream in Oman. A rapid initial mass loss, attributed to leaching, was followed by a more gradual decline. Daily exponential decay rates (k) calculated over 32 days were 0.011 (fine mesh litter bags) and 0.014 (coarse mesh litter bags). The difference between bag types was not significant, suggesting limited impact of leaf‐shredding invertebrates. Ergosterol levels on leaves from fine mesh bags peaked at 0.3 mg g1 AFDM after 16 days of stream exposure. During the experimental period, which followed the annual leaf fall, the concentration of aquatic hyphomycete conidia in the stream varied between 82 and 1362 l–1. Based on the morphology of conidia found in the water column or released from leaves, we identified 14 species of aquatic hyphomycetes. Tetracladium apiense was the most common taxon (62.2% of conidia in water column during the field experiment). Three other Tetracladium species contributed another 8%. Plating out leaf particles yielded common epiphytic taxa such as Alternaria sp., Aureobasidium pullulans and Phoma sp. The measured metrics of leaf decay in this desert stream fall within the range of values observed in temperate and tropical streams, with clear evidence for an early leaching phase, and no evidence of a strong impact of leaf shredders. The community of aquatic hyphomycetes appears impoverished. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Nutrient loss from litter plays an essential role in carbon and nutrient cycling in nutrient‐constrained environments. However, the decomposition and nutrient dynamics of nutrient‐rich mistletoe litter remains unknown in semi‐arid savanna where productivity is nutrient limited. We studied the decomposition and nutrient dynamics (nitrogen: N, phosphorous; P, carbon: C) of litter of three mistletoe species, Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum and N‐fixing Acacia karroo using the litter‐bag method in a semi‐arid savanna, southwest Zimbabwe. The temporal dynamics of the soil moisture content, microbial populations, and termite activity during decomposition were also assessed. Decay rates were slower for A. karroo litter (k = 0.63), but faster for the high quality mistletoe litters (mean k‐value = 0.79), which supports the premise that mistletoes can substantially influence nutrient availability to other plants. Nitrogen loss was between 1.3 and 3 times greater in E. ngamicum litter than in the other species. The litter of the mistletoes also lost C and P faster than A. karroo litter. However, soil moisture content and bacterial and fungal colony numbers changed in an opposite direction to changes in the decomposition rate. Additionally, there was little evidence of termite activity during the decay of all the species litters. This suggests that other factors such as photodegradation could be important in litter decomposition in semi‐arid savanna. In conclusion, the higher rate of decay and nutrient release of mistletoe than A. karroo litter indicate that mistletoes play an important role in carbon and nutrient fluxes in semi‐arid savanna.  相似文献   

10.
One of the most important sources of energy in aquatic ecosystems is the allochthonous input of detritus. Replacement of native tree species by exotic ones affects the quality of detritus entering freshwater ecosystems. This replacement can alter nutrient cycles and community structure in aquatic ecosystems. The aims of our study were (1) to compare leaf litter decomposition of two widely distributed exotic species (Ailanthus altissima and Robinia pseudoacacia) with the native species they coexist with (Ulmus minor and Fraxinus angustifolia), and (2) to compare macroinvertebrate colonization among litters of the invasive and native species. Litter bags of the four tree species were placed in the water and collected every 2, 25, 39, 71, and 95 days in a lentic ecosystem. Additionally, the macroinvertebrate community on litter bags was monitored after 25, 39, and 95 days. Several leaf chemistry traits were measured at the beginning (% lignin; lignin:N, C:N, LMA) and during the study (leaf total nitrogen). We detected variable rates of decomposition among species (k values of 0.009, 0.008, 0.008, and 0.005 for F. angustifolia, U. minor, A. altissima and R. pseudoacacia, respectively), but we did not detect an effect of litter source (from native/exotic). In spite of its low decay, the highest leaf nitrogen was found in R. pseudoacacia litter. Macroinvertebrate communities colonizing litter bags were similar across species. Most of them were collectors (i.e., they feed on fine particulate organic matter), suggesting that leaf material of either invasive or native trees was used as substrate both for the animals and for the organic matter they feed on. Our results suggest that the replacement of the native Fraxinus by Robinia would imply a reduction in the rate of leaf processing and also a slower release of leaf nitrogen to water.  相似文献   

11.
In a limnocorral (LC) experiment performed in mesotrophic Lake Lucerne, Switzerland, a control LC containing a planktonic community similar to that in the lake was compared with a LC where the large zooplankton had been removed by filtration at the beginning of the experiment. The herbivorous zooplankton (mainly Daphnia galeata and D. hyalina) reduced algal biomass and primary production, however did not influence the size structure of the phytoplankton and the relative amount of different size classes contributing to the total primary production. Likewise, the seston (POC and PP) concentrations were diminished without changes in particle size composition. Since herbivorous zooplankton transform smaller particles into larger particles (fecal aggregates) through their grazing activity and thus enhanced particle formation owing to coagulation and microbial activity, sedimentation losses of POC and PP were increased in the LC with zooplankton. The importance of planktonic and sestonic particle size structure in aquatic ecosystems is stressed, as the smallest algae (< 12 μm) contributed 80 % of the primary production, which is in contrast to the 33 % contributed to the total POC sedimentation by this particle size class.  相似文献   

12.
We performed field and laboratory experiments to evaluate the effect of solar radiation (UVR and PAR) on leaf litter decomposition, fungal biomass and sporulation rates, in the Andean Patagonia, where high UVR levels are common. Leaves of Alnus glutinosa exposed to three treatments, normal radiation (PAR + UVR), protected from UVR and protected from total radiation (SHADE) by plastic films lost 31–37% of their mass. Leaves of Nothofagus pumilio lost 61–64% of their mass under the same conditions. For both leaf species, differences in mass losses among treatments were not statistically significant. Sporulation rates were significantly lower in the SHADE treatment. Fungal biomass accounted for 6.2 to 7.1% of leaf mass, without significant differences among treatments. In the laboratory, leaf discs of A. glutinosa colonized by single species of aquatic hyphomycetes (Articulospora tetracladia, Flagellospora curta or Lunulospora curvula) and exposed to or protected from UVR did not differ in mass loss and sporulation rates. Pure cultures of two fungal species grew at the same rates when exposed to light (PAR and PAR + UVR) or to the SHADE. In summary, we found no evidences that current high levels of UV radiation affect litter decomposition mediated by aquatic hyphomycetes. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The rate of decomposition of summer leaf-fall (abscised leaves), winter leaf-fall (containing some green leaves) and mature green (picked) leaves was assessed in sub-alpine forests of E. delegatensis (R. T. Baker), E. pauciflora (Sieb. ex Spreng) and E. dives (Schau.) in the Brindabella Range, Australian Capital Territory, using litter bag and tethered leaf techniques. The relative contribution of leaching, microbial respiration and grazing by invertebrate macrofauna to loss of leaf weight was determined. The effect of leaching and microbial respiration was assessed in terms of weight loss per unit area of leaf (specific leaf weight), while losses due to macro-faunal grazing were assessed by measuring reductions in leaf area. Litter decomposition constants for litter components (leaf, bark, wood) and total litter were determined from long-term records of litterfall and accumulated litter. Weight losses of abscised leaves during the initial 12 months ranged from 25% for E. pauciflora to 39% for E. delegatensis and were almost entirely due to reduction in specific leaf weight. Losses in the weight of leaves falling in winter ranged from 38 to 49%, while green leaves lost 45 - 59%. Approximately 50% of the total weight loss of green leaves was due to a loss in leaf area caused by skeletonization by litter macrofauna. Thus abscised leaves rather than green leaves must be used for measuring litter decomposition rates since abscised leaves constitute most of the litterfall in eucalypt forests. Leaves placed in the field in autumn decomposed slowly during the first summer, while the rate increased during the second winter and summer. Low litter moisture content appears to limit decomposition in the initial summer period in all communities, after which litterfall provides a mulch which reduces the rate of desiccation of lower litter layers. A simple linear regression model relating decomposition rate to the number of days (D) when litter moisture content exceeded 60% ODW accounted for 63-83% of the variation in decomposition of leaves in the field. Inclusion of mean monthly air temperature (T) and the product of D and T (day degrees when litter was wet) in a multiple linear regression increased the variation in decomposition accounted for to 80 – 90%. The rate of weight loss showed a positive linear relationship with the initial concentration of nitrogen (N) or phosphorus (P) in the leaf. These concentrations are an index of the decomposability of leaf substrates (e.g. degree of sclerophylly or lignification). The rate of loss of specific weight was similar for tethered leaves and for leaves enclosed in mesh bags. Measured loss in specific leaf weight after 70 – 90 weeks was less than that predicted using decomposition constants (k).  相似文献   

14.
不同水分条件下毛果苔草枯落物分解及营养动态   总被引:1,自引:0,他引:1  
于2009年5月至2010年5月采用分解袋法,研究了三江平原典型湿地植物毛果苔草枯落物分解对水分条件变化的响应,探讨了典型碟形洼地不同水位下枯落物分解1a时间内的分解速率与N、P等营养元素动态。分解1a内,无积水环境下枯落物失重率为34.99%,季节性积水环境下为27.28%,常年积水环境下随水位增加枯落物失重率分别为26.99%与30.67%,表明积水条件抑制了枯落物的分解。枯落物的分解随环境变化表现出阶段性特征,分解0—122 d内随水位增加枯落物失重率分别为16.09%、24.25%、23.53%与26.60%,即生长季内积水条件促进了枯落物有机质的分解及重量损失。而随实验进行,分解122—360 d内随水位增加毛果苔草枯落物的失重率分别为18.90%、3.02%、3.46%、4.03%,即在非生长季土壤冻融期积水条件抑制了枯落物分解(P<0.05)。水分条件对毛果苔草枯落物N元素的影响表现为积水条件促进生长季内枯落物的N固定,水位最高处毛果苔草N浓度显著高于无积水环境(P<0.05)。但进入冻融期后积水环境下枯落物N浓度与含量降低;其中季节性积水限制了枯落物的N积累能力,至分解360d时与初始值相比表现出明显的N释放(P=0.01)。毛果苔草枯落物分解61d时P出现富集,其中积水条件下P的富集作用增强,但与水位不相关。分解1a后毛果苔草枯落物表现为P的净释放,不同水分条件下枯落物P元素损失没有明显差异(P>0.05)。  相似文献   

15.
Litterfall and leaf decomposition rates were measured in Choui Island, 45 km downstream from the confluence of the Paraná and Paraguay rivers. The material was collected biweekly from April 1985 through September 1986. Decomposition was measured in situ by the litter bag technique.Annual litterfall of Tessaria integrifolia gallery forest measured in the period April 1985 to March 1986 was 8.15 t ha-1. Leaf litterfall was seasonal, i.e. significantly less leaf litter was shed during the high water phase than during the low water phase. The half life of the T. integrifolia litter over 38 days of decomposition was 20 days. At the beginning of the experiment, 15 and 38 days subsamples of remaining detritus were analyzed in order to determine changes in the nutrient content. After 38 days of incubation, the order of nutrient disappearance was Ca > K > N > Mg > Na > P.The number of invertebrates per g remaining litter of Tessaria integrifolia increased between incubations days 7 and 31. Collector-gatherers were more abundant after 38 days incubation; there were no shredders colonizing the leaf litter bags.  相似文献   

16.
Contributions of abiotic and biotic processes to the decomposition of floating leaves ofNymphaea elegans were separately evaluated by comparing the rate obtained from anin situ experiment of submerging dry leaf material in a lake, and that from a laboratory experiment of submerging dry leaf material in lake water with a bio-fixing reagent. It took 8 days to decompose 79.4% of the initial dry weight of the floating leaf ofN. elegans in a tropical lake. Of the dry weight loss, 32.9% and 67.1% were atributed to abiotic and biotic decomposition, respectively. The relationship between decomposition rate and the mesh size of the leaf litter bags was examined by the application of a mathematical model. A reasonable value of decomposition loss at an early stage could be obtained using a bag with a mesh opening of 9.9 mm2. The decomposition rate of floating leaves is faster than that of other aquatic plants. Rapid decomposition ofN. elegans leaves may be attributed to the fact that the plant has a low carbon to nitrogen ratio.  相似文献   

17.
A simple model of the decomposition and nitrogen mineralization of plant material from two unfertilized grassland ecosystems has been developed, with only the proportion of leaves and stems in the original material, the initial nitrogen contents of these plant parts and temperature as input data. The model simulates carbon losses from stems and leaves, using a double exponential decay function, with the temperature sum as independent variable. Mineralization of nitrogen is not calculated via microbial growth rates, but simulated on the basis of the carbon utilization efficiency of the microorganisms and the critical C/N ratio, i.e. the C/N ratio of the litter at which the microbial demand for nitrogen is met exactly. The parameter values for leaching fractions of carbon and nitrogen, relative decay rates, microbial carbon utilization efficiencies and critical C/N ratios were derived from a litter bag experiment with 12 litter types (species) including both green and dead materials, carried out in two unfertilized grassland ecosystems differing in production level. The model was evaluated using a cross-validation method, in which one species was omitted from the parametrization procedure, and its decomposition and mineralization were predicted by the resulting model. In general there was good agreement between the observed and predicted amounts of carbon and nitrogen remaining for all green litter types/species, but carbon and nitrogen dynamics in the dead material of Festuca rubra were poorly predicted. This disparity has been attributed to the proportion of leaves in the material of Festuca rubra (95%) being far beyond the range of leaf proportions in the three litter types the calibration set consisted of (8–35%). When the data of all litter types were used to determine the model parameters, good agreement was obtained between measured and simulated values for the changes in nitrogen and carbon in all litter types of both the green and dead material series. Optimization yielded parameter values for microbial carbon utilization efficiencies of 0.30 for microorganisms associated with green litter and 0.35 for those associated with dead litter. The critical C/N ratios for green and dead material were found to be 29 and 36, respectively.  相似文献   

18.
凋落物是植物在其生长发育过程中新陈代谢的产物,是土壤有机质输入的重要途径,凋落物分解是生态系统养分循环的关键过程之一。在全球气候变化背景下,热带地区干旱事件发生的频率和强度均在增加,同时,普遍认为热带地区受磷(P)限制,所以探讨干旱胁迫和土壤磷可用性对热带地区叶凋落物分解的影响及两者是否存在交互效应十分必要,有助于了解干旱对该区叶凋落物分解的影响机制以及是否受土壤磷调控。依据植物多度、碳固持类型、叶质地,以海南三亚甘什岭热带低地雨林的4个树种叶凋落物(铁凌 Hopea exalata、白茶树 Koilodepas bainanense、黑叶谷木 Memecylon nigrescens、山油柑 Acronychia pedunculata)为实验材料,依托2019年在该区建成的热带低地雨林模拟穿透雨减少、磷(P)添加双因素交互控制实验平台,包括干旱(D -50%穿透雨)、P添加(P +50Kg P hm-2a-1)、模拟干旱×P添加(DP -50%穿透雨×+50Kg P hm-2a-1)、对照(CK)4个处理,且4种处理随机分布于3个区组,即设置了3个重复。使用常规的凋落物分解袋法探究实验处理对4个树种叶凋落物的分解系数、碳(C)、氮(N)元素动态变化的影响。结果表明:不同树种的叶凋落物因基质质量不同分解存在差异。模拟干旱处理对叶凋落物C、N损失产生抑制作用,但是对不同树种叶凋落物的抑制作用不同,原因是干旱处理通过抑制土壤分解者活动、减弱凋落物的物理破碎作用,间接抑制凋落物分解,并且由于高质量(含N量高)凋落物受微生物分解者影响较大,所以该凋落物分解受干旱抑制程度较大;P添加处理对叶凋落物C损失存在促进作用、N损失存在抑制作用,原因是土壤中P含量的升高,提高了微生物分解高C物质的能力,以及当土壤中P含量较高时,间接抑制微生物通过分解凋落物获取养分或者促进微生物优先完成自身生长代谢需要而不是合成分解凋落物所需要的酶,导致叶凋落物N损失下降;模拟干旱与P添加处理存在显著交互效应,P添加处理缓解或反转了干旱胁迫对叶凋落物分解的抑制作用。以上结果表明,不同基质质量的凋落物分解存在差异,对干旱胁迫的响应不同;在叶凋落物分解过程中,P添加促进C损失、抑制N损失;此外,在热带低地雨林,土壤中P可用性变化可调节干旱对凋落物分解的影响。  相似文献   

19.
Litter quality in a north European transect versus carbon storage potential   总被引:8,自引:0,他引:8  
Berg  Björn  Meentemeyer  Vernon 《Plant and Soil》2002,242(1):83-92
Newly shed foliar plant litter often has a decomposition rate of ca 0.1–0.2% day–1, which decreases greatly with time and may reach 0.0001 to 0.00001% day–1 or lower in litter material in the last stages of decay. The decrease in decomposability (substrate quality) varies among species and is complex, involving both direct chemical changes in the substrate itself and the succession in microorganisms able to compete for substrate with a given chemical composition. In late stages, the decomposition appears very little affected by climate, suggesting that climate change will have little effect on late-stages decomposition rates. Here, we apply a model for the late stages of litter decomposition to address the question of climate-change effects on soil-C storage. Decomposition of litter turning into soil organic matter (SOM) is determined by the degradation rate of lignin. In the last phases of decay, raised N concentrations have a rate-retarding effect on lignin degradation and thus on the decomposition of far-decomposed litter and litter in near-humus stages. The retardation of the decomposition rate in late stages may be so strong that decomposition reaches a limit value at which total mass losses virtually stop. At such a stage the remaining litter would be close to that of stabilized SOM. The estimated limit values for different species range from about 45 to 100% decomposition indicating that between 0 and 55% should either be stabilized or decompose extremely slowly. For no less than 106 long-term studies on litter decomposition, encompassing 21 litter types, limit values were significantly and negatively related to N concentration, meaning that the higher the N concentration in the newly shed litter (the lower the C/N ratio) the more litter was left when it reached its limit value. Trees growing under warmer and wetter climates (higher actual evapotranspiration, AET) tend to shed foliar litter more rich in N than those growing under colder and drier climates. A change in climate resulting in higher AET would thus mean that within species, e.g., Scots pine, a higher N level in the foliar litter may result. Further, within the boreal system deciduous species appear to have foliar litter richer in N than have conifers and within the conifers group, Norway spruce has needle litter more rich in N than, e.g., Scots pine. Thus, a change of species (e.g., by planting) from pine to spruce or from spruce to a deciduous species such as birch may result in a higher N level in the litter fall at a given site. In both cases the result would be a lower limit value for decomposition. The paper presents an hypothesis, largely based on available data that a change in climate of 4° higher annual average temperature and 40% higher precipitation in the Baltic basin would result in higher N levels in litter, lower decomposition and thus a considerable increase in humus accumulation.  相似文献   

20.
With the continuing increase in the impact of human activities on ecosystems, ecologists are increasingly becoming interested in understanding the effects of nitrogen deposition on litter decomposition. At present, numerous studies have investigated the effects of single form of nitrogen fertilization on litter decomposition in forest ecosystems. However, forms of N deposition vary, and changes in the relative importance of different forms of N deposition are expected in the future. Thus, identifying the effects of different forms of N deposition on litter decomposition in forest ecosystems is a pressing task. In this study, two dominant litter types were chosen from Zijin Mountain in China: Quercus acutissima leaves from a late succession broad-leaved forest and Pinus massoniana needles from an early succession coniferous forest. The litter samples were incubated in microcosms with original forest soil and treated with four different forms of nitrogen fertilization [NH4 +, NO3 , CO(NH2)2, and a mix of all three]. During a 5-month incubation period, litter mass losses, soil pH values, and soil enzyme activities were determined. Results show that all four forms of nitrogen fertilization significantly accelerate litter decomposition rates in the broadleaf forest, while only two forms of nitrogen fertilization [i.e., mixed nitrogen and CO(NH2)2] significantly accelerate litter decomposition rates in the coniferous forest. Litter decomposition rates with the mixed nitrogen fertilization were higher than those in any single form of nitrogen fertilization. All forms of nitrogen fertilization enhanced soil enzyme activities (i.e., catalase, cellulase, invertase, polyphenol oxidase, nitrate reductase, urease, and acid phosphatase) during the litter decomposition process for the two forest types. Soil enzyme activities under the mixed nitrogen fertilization were higher than those under any single form of nitrogen fertilization. These results suggest that the type and activity of the major degradative enzymes involved in litter decomposition vary in different forest types under different forms of nitrogen fertilization. They also indicate that a long-term consequence of N deposition-induced acceleration of litter decomposition rates in subtropical forests may be the release of carbon stored belowground to the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号