首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete sequence of honeybee (Apis mellifera) mitochondrial DNA is reported being 16,343 bp long in the strain sequenced. Relative to their positions in the Drosophila map, 11 of the tRNA genes are in altered positions, but the other genes and regions are in the same relative positions. Comparisons of the predicted protein sequences indicate that the honeybee mitochondrial genetic code is the same as that for Drosophila; but the anticodons of two tRNAs differ between these two insects. The base composition shows extreme bias, being 84.9% AT (cf. 78.6% in Drosophila yakuba). In protein-encoding genes, the AT bias is strongest at the third codon positions (which in some cases lack guanines altogether), and least in second codon positions. Multiple stepwise regression analysis of the predicted products of the protein-encoding genes shows a significant association between the numbers of occurrences of amino acids and %T in codon family, but not with the number of codons per codon family or other parameters associated with codon family base composition. Differences in amino acid abundances are apparent between the predicted Apis and Drosophila proteins, with a relative abundance in the Apis proteins of lysine and a relative deficiency of alanine. Drosophila alanine residues are as often replaced by serine as conserved in Apis. The differences in abundances between Drosophila and Apis are associated with %AT in the codon families, and the degree of divergence in amino acid composition between proteins correlates with the divergence in %AT at the second codon positions. Overall, transversions are about twice as abundant as transitions when comparing Drosophila and Apis protein-encoding genes, but this ratio varies between codon positions. Marked excesses of transitions over chance expectation are seen for the third positions of protein-coding genes and for the gene for the small subunit of ribosomal RNA. For the third codon positions the excess of transitions is adequately explained as due to the restriction of observable substitutions to transitions for conserved amino acids with two-codon families; the excess of transitions over expectation for the small ribosomal subunit suggests that the conservation of nucleotide size is favored by selection.  相似文献   

2.
Initiation complex formation between PP7 RNA and ribosomes of Pseudomonas aeruginosa and Escherichia coli has been investigated. The PP7 RNA fragments protected by both species of ribosome have been isolated, and their sequences have been determined. Only one binding sites is available on the intact PP7 RNA strand, and this site is recognized by ribosomes of both species. The PP7 RNA binding site is approximately 38 nucleotides long. It contains two AUG sequences and a purine-rich segment near the 5'-end that is complementary to segments near the 3'-ends of the 16S ribosomal RNA's of both P. aeruginosa and E. coli. In order to establish which of the AUG codons acts as the initiator, the H2N-terminal amino acid sequence of PP7 coat protein was determined. This sequence is compatible with the codon sequence following the second AUG codon. The extent of the reaction of PP7 RNA with E. coli ribosomes is greater than with P. aeruginosa ribosomes, but our results do not indicate a qualitative difference in the initial interaction between intact PP7 RNA and the ribosomes of either species.  相似文献   

3.
A rice (Oryza sativa L.) cDNA clone coding for the cytoplasmic ribosomal protein L5, which associates with 5 S rRNA for ribosome assembly, was cloned and its nucleotide sequence was determined. The primary structure of rice L5, deduced from the nucleotide sequence, contains 294 amino acids and has intriguing features some of which are also conserved in other eucaryotic homologues. These include: four clusters of basic amino acids, one of which may serve as a nucleolar localization signal; three repeated amino acid sequences; the conservation of glycine residues. This protein was identified as the nuclear-encoded cytoplasmic ribosomal protein L5 of rice by sequence similarity to other eucaryotic ribosomal 5 S RNA-binding proteins of rat, chicken, Xenopus laevis, and Saccharomyces cerevisiae. Rice L5 shares 51 to 62% amino acid sequence identity with the homologues. A group of ribosomal proteins from archaebacteria including Methanococcus vanniellii L18 and Halobacterium cutirubrum L13, which are known to be associated with 5 S rRNA, also related to rice L5 and the other eucaryotic counterparts, suggesting an evolutionary relationship in these ribosomal 5 S RNA-binding proteins.  相似文献   

4.
A previous study has suggested that a G to A base change at position 169 of the GHRH-receptor gene in human somatotrophinomas is a mutation and confers hypersensitivity to GHRH. The alternative base converts codon 57 from GCG to AGC, resulting in replacement of alanine (Ala) with threonine (Thr). In the present study, two of five human GH-secreting somatotrophinomas were found to possess the codon 57 AGC sequence. The GCG allele was also detected, indicating heterozygosity. However, the patients' normal blood-derived DNA also yielded the same sequence pattern, indicating that the Ala --> Thr amino acid change is a normal polymorphism, and not a somatic mutation. Nevertheless, in vitro, the tumors possessing the Ala --> Thr amino acid change responded very strongly to GHRH in terms of cAMP formation, being increased 40- and 200-fold, in comparison to the 2-fold increases by tumors without the alternative GHRH-receptor sequence. Likewise, the in vitro response of GH secretion to GHRH was elevated. One of the two tumors with the alternative Thr residue, and the highest responder to GHRH, possessed a gsp mutation, despite the fact that these defects are thought to reduce responsiveness to GHRH. These results fail to confirm that the GCG --> AGC at codon 57 of the GHRH-receptor gene is a mutation, but do support the concept that the alternative form with Thr confers increased sensitivity to GHRH.  相似文献   

5.
It is well established that the vast majority of proteins of all taxonomical groups and species are initiated by an AUG codon, translated into the amino acid methionine (Met). Many attempts were made to evaluate the importance of the sequences surrounding the initiation codon, mostly focusing on the RNA sequence. However, the role and importance of the amino acids following the initiating Met residue were rarely investigated, mostly in bacteria and fungi. Herein, we computationally examined the protein sequences of all major taxonomical groups represented in the Swiss-Prot database, and evaluated the preference of each group to specific amino acids at the positions directly following the initial Met. The results indicate that there is a species-specific preference for the second amino acid of the majority of protein sequences. Interestingly, the preference for a certain amino acid at the second position changes throughout evolution from lysine in prokaryotes, through serine in lower eukaryotes, to alanine in higher plants and animals.  相似文献   

6.
We determined the sites at which ribosomes form initiation complexes on Rous sarcoma virus RNA in order to determine how initiation of Pr76gag synthesis at the fourth AUG codon from the 5' end of Rous sarcoma virus strain SR-A RNA occurs. Ribosomes bind almost exclusively at the 5'-proximal AUG codon when chloride is present as the major anion added to the translational system. However, when chloride is replaced with acetate, ribosomes bind at the two 5'-proximal AUG codons, as well as at the initiation site for Pr76gag. We confirmed that the 5'-proximal AUG codon is part of a functional initiation site by identifying the seven-amino acid peptide encoded there. Our results suggest that (i) translation in vitro of Rous sarcoma virus virion RNA results in the synthesis of at least two polypeptides; (ii) the pattern of ribosome binding observed for Rous sarcoma virus RNA can be accounted for by the modified scanning hypothesis; and (iii) the interaction between 40S ribosomal subunits or 80S ribosomal complexes is stronger at the 5'-proximal AUG codon than at sites farther downstream, including the initiation site for the major viral proteins.  相似文献   

7.
The cotranslational incorporation of the unusual amino acid selenocysteine (Sec) into both prokaryotic and eukaryotic proteins requires the recoding of a UGA stop codon as one specific for Sec. The recognition of UGA as Sec in mammalian selenoproteins requires a Sec insertion sequence (SECIS) element in the 3' untranslated region as well as the SECIS binding protein SBP2. Here we report a detailed analysis of SBP2 structure and function using truncation and site-directed mutagenesis. We have localized the RNA binding domain to a conserved region shared with several ribosomal proteins and eukaryotic translation termination release factor 1. We also identified a separate and novel functional domain N-terminal to the RNA binding domain which was required for Sec insertion but not for SECIS binding. Conversely, we showed that the RNA binding domain was necessary but not sufficient for Sec insertion and that the conserved glycine residue within this domain was required for SECIS binding. Using glycerol gradient sedimentation, we found that SBP2 was stably associated with the ribosomal fraction of cell lysates and that this interaction was not dependent on its SECIS binding activity. This interaction also occurred with purified components in vitro, and we present data which suggest that the SBP2-ribosome interaction occurs via 28S rRNA. SBP2 may, therefore, have a distinct function in selecting the ribosomes to be used for Sec insertion.  相似文献   

8.
The complete mitochondrial genome sequence of the parasitic nematode Strongyloides stercoralis was determined, and its organisation and structure compared with other nematodes for which complete mitochondrial sequence data were available. The mitochondrial genome of S. stercoralis is 13,758 bp in size and contains 36 genes (all transcribed in the clockwise direction) but lacks the atp8 gene. This genome has a high T content (55.9%) and a low C content (8.3%). Corresponding to this T content, there are 16 (poly-T) tracts of >/=12 Ts distributed across the genome. In protein-coding genes, the T bias is greatest (76.4%) at the third codon position compared with the first and second codon positions. Also, the C content is higher at the first (9.3%) and second (13.4%) codon positions than at the third (2%) position. These nucleotide biases have a significant effect on predicted codon usage patterns and, hence, on amino acid compositions of the mitochondrial proteins. Interestingly, six of the 12 protein-coding genes are predicted to employ a unique initiation codon (TTT), which has not yet been reported for any other animal mitochondrial genome. The secondary structures predicted for the 22 transfer RNA (trn) genes and the two ribosomal RNA (rrn) genes are similar to those of other nematodes. In contrast, the gene arrangement in the mitochondrial genome of S. stercoralis is different from all other nematodes studied to date, revealing only a limited number of shared gene boundaries (atp6-nad2 and cox2-rrnL). Evolutionary analyses of mitochondrial nucleotide and amino acid sequence data sets for S. stercoralis and seven other nematodes demonstrate that the mitochondrial genome provides a rich source of phylogenetically informative characters. In conclusion, the S. stercoralis mitochondrial genome, with its unique gene order and characteristics, should provide a resource for comparative mitochondrial genomics and systematics studies of parasitic nematodes.  相似文献   

9.
10.
We have investigated protein-rRNA cross-links formed in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus at the molecular level using UV and 2-iminothiolane as cross-linking agents. We identified amino acids cross-linked to rRNA for 13 ribosomal proteins from these organisms, namely derived from S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29 and L36. Several other peptide stretches cross-linked to rRNA have been sequenced in which no direct cross-linked amino acid could be detected. The cross-linked amino acids are positioned within loop domains carrying RNA binding features such as conserved basic and aromatic residues. One of the cross-linked peptides in ribosomal protein S3 shows a common primary sequence motif--the KH motif--directly involved in interaction with rRNA, and the cross-linked amino acid in ribosomal protein L36 lies within the zinc finger-like motif of this protein. The cross-linked amino acids in ribosomal proteins S17 and L6 prove the proposed RNA interacting site derived from three-dimensional models. A comparison of our structural data with mutations in ribosomal proteins that lead to antibiotic resistance, and with those from protein-antibiotic cross-linking experiments, reveals functional implications for ribosomal proteins that interact with rRNA.  相似文献   

11.
12.
Eukaryotic ribosomal proteins constituting the binding site for the initiator codon AUG on the ribosome at the translation initiation step were investigated by UV-induced cross-linking between protein and mRNA. The 80S-initiation complex was formed in a rabbit reticulocyte cell-free system in the presence of sparsomycin with radiolabeled Omega-fragment as a template, which was a 73-base 5'-leader sequence of tobacco mosaic virus RNA having AUG at the extreme 3'-terminal end and extended with 32pCp. Two radioactive peaks were sedimented by sucrose gradient centrifugation, one being the 80S initiation complex formed at the 3'-terminal AUG codon, and the other presumably a "disome" with an additional 80S ribosome bound at an upstream AUU codon, formed when Omega-fragment was incubated with sparsomycin [Filipowicz and Henni (1979) Proc. Natl. Acad. Sci. USA 76, 3111-3115]. Cross-links between ribosomal proteins and the radiolabeled Omega-fragment were induced in situ by UV-irradiation at 254 nm. After extensive nuclease digestion of the complexes, ribosomal proteins were separated by two-dimensional gel electrophoresis. Autoradiography identified the proteins S7, S10, S25, S29, and L5 of the 80S initiation complex and S7, S25, S29 and L5 of that in the disome as 32P-labeled proteins. Together with the results of cross-linking experiments of other investigators and recently solved crystal structures of prokaryotic ribosomes, the spatial arrangement of eukaryotic ribosomal proteins at the AUG-binding domain is discussed.  相似文献   

13.
14.
The amino acid selenocysteine is encoded by UGA, usually a stop codon, thus requiring a specialized machinery to enable its incorporation into selenoproteins. The machinery comprises the tRNASec, a 3′-UTR mRNA stem–loop termed SElenoCysteine Insertion Sequence (SECIS), which is mandatory for recoding UGA as a Sec codon, the SECIS Binding Protein 2 (SBP2), and other proteins. Little is known about the molecular mechanism and, in particular, when, where, and how the SECIS and SBP2 contact the ribosome. Previous work by others used the isolated SECIS RNA to address this question. Here, we developed a novel approach using instead engineered minimal selenoprotein mRNAs containing SECIS elements derivatized with photoreactive groups. By cross-linking experiments in rabbit reticulocyte lysate, new information could be gained about the SBP2 and SECIS contacts with components of the translation machinery at various translation steps. In particular, we found that SBP2 was bound only to the SECIS in 48S pre-initiation and 80S pretranslocation complexes. In the complex where the Sec-tRNASec was accommodated to the A site but transpeptidation was blocked, SBP2 bound the ribosome and possibly the SECIS element as well, and the SECIS had flexible contacts with the 60S ribosomal subunit involving several ribosomal proteins. Altogether, our findings led to broadening our understanding about the unique mechanism of selenocysteine incorporation in mammals.  相似文献   

15.
Mitogillin and the related fungal ribotoxins are highly specific ribonucleases which inactivate the ribosome enzymatically by cleaving the 23-28 S RNA of the large ribosomal subunit at a single phosphodiester bond. The site of cleavage occurs between G4325 and A4326 (rat ribosome numbering) which are present in one of the most conserved sequences (the alpha-sarcin loop) among the large subunit ribosomal RNAs of all living species. Amino acid sequence comparison of ribotoxins and guanyl/purine ribonucleases have identified domains or residues likely involved in ribonucleolytic activity or cleavage specificity. Fifteen deletion mutants (each 4 to 8 amino acid deletions) in motifs of mitogillin showing little amino acid sequence homology with guanyl/purine ribonucleases were constructed by site-directed mutagenesis. Analyses of the purified mutant proteins identified those regions in fungal ribotoxins contributing to ribosome targeting and modulating the catalytic activity of the toxin; some of the identified motifs are homologous to sequences in ribosomal proteins and elongation factors. This mutational study of mitogillin together with the recently published x-ray structure of restrictocin (a close relative of mitogillin) supports the hypothesis that the specific cleavage properties of ribotoxins are the result of natural genetic engineering in which the ribosomal targeting elements of ribosome-associated proteins were inserted into nonessential regions of T1-like ribonucleases.  相似文献   

16.
The amino acid sequence of ribosomal protein S18 from Bacillus stearothermophilus has been completely determined by automated sequence analysis of the intact protein as well as of peptides derived from digestion with Staphylococcus aureus protease at pH 4.0 and cleavage with cyanogen bromide. The carboxy-terminal region was verified by both amino acid analyses of chymotryptic peptides and by mass spectrometry from the terminal region. The protein contains 77 amino acid residues and has an Mr of 8838. Comparison of this sequence with the sequences of the S18 proteins from tobacco and liverwort chloroplasts and E. coli shows a relatively high similarity, ranging from 42 to 55% identical residues with the B. stearothermophilus S18 protein. The regions of homology common to all four proteins consist of several positively charged sections spanning the entire length of the protein.  相似文献   

17.
18.
耐辐射奇球菌超氧化物歧化酶基因的克隆与序列分析   总被引:1,自引:0,他引:1  
By using a 453 bp length gene fragment of superoxide dismutase(SOD)as a probe,which was firstly amplified from Deinococcus radiodurans genomic DNA by PCR with degenerate oligonucleotide primers corresponding to the conservative regions of known SODs,a putative SOD gene was identified from the database of D.radiodurans whole genome.Its 636 bp length open reading frame and 5′ and 3′ flanking sequence was determined.The conventional E.coli ribosomal and RNA polymerase binding sites were found upstream from SOD encoding region and an inverted repeat sequence downstream of the termination codon.The deduced 211 amino acid sequence of the structural gene showed a high similarity to other manganese and iron containing SODs in normally conserve regions.  相似文献   

19.
Binding of aminoglycoside antibiotics to 16S ribosomal RNA induces a particular structure of the decoding center and increases the misincorporation of near-cognate amino acids. By kinetic analysis we show that this is due to stabilization of the near-cognate codon recognition complex and the acceleration of two rearrangements that limit the rate of amino acid incorporation. The same rearrangement steps are accelerated in the cognate coding situation. We suggest that cognate codon recognition, or near-cognate codon recognition augmented by aminoglycoside binding, promote the transition of 16S rRNA from a 'binding' to a 'productive' conformation that determines the fidelity of decoding.  相似文献   

20.
S S Golden  G W Stearns 《Gene》1988,67(1):85-96
The genome of the cyanobacterium Synechococcus sp. PCC7942 contains two genes encoding the D2 polypeptide of photosystem II (PSII), which are designated here as psbDI and psbDII. The psbDI gene, like the psbD gene of plant chloroplasts, is cotranscribed with and overlaps the open reading frame of the psbC gene, encoding the PSII protein CP43. The psbDII gene is not linked to psbC, and appears to be transcribed as a monocistronic message. The two psbD genes encode identical polypeptides of 352 amino acids, which are 86% conserved with the D2 polypeptide of spinach. In plants, the translational start codon of the psbC gene has been reported to be an ATG codon 50 bp upstream from the end of the psbD gene. This triplet is not present in the psbDI sequence of Synechococcus sp., but is replaced by ACG, a codon which is very unlikely to initiate translation. Translation of the psbC gene may begin at a GTG codon which overlap the psbDI open reading frame by 14 bp and is preceded by a block of homology to the 3' end of the 16S ribosomal RNA, a potential ribosome-binding site. There are only two bp differences between the sequences of the two psbD genes; one of these results in substitution in psbDII of GCG for the presumed GTG start codon in psbDI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号