首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
Agents that can arrest cellular proliferation are now providing insights into mechanisms of growth factor action and how this action may be controlled. It is shown here that the macrophage activating agents tumor necrosis factor-alpha (TNF alpha), interferon-gamma (IFN gamma), and lipopolysaccharide (LPS) can maximally inhibit colony stimulating factor-1 (CSF-1)-induced, murine bone marrow-derived macrophage (BMM) DNA synthesis even when added 8-12 h after the growth factor, a period coinciding with the G1/S-phase border of the BMM cell cycle. This inhibition was independent of autocrine PGE2 production or increased cAMP levels. In order to compare the mode of action of these agents, their effects on a number of other BMM responses in the absence or presence of CSF-1 were examined. All three agents stimulated BMM protein synthesis; TNF alpha and LPS, but not IFN gamma, stimulated BMM Na+/H+ exchange and Na+,K(+)-ATPase activities, as well as c-fos mRNA levels. IFN gamma did not inhibit the CSF-1-induced Na+,K(+)-ATPase activity. TNF alpha and LPS inhibited both CSF-1-stimulated urokinase-type plasminogen activator (u-PA) mRNA levels and u-PA activity in BMM, whereas IFN gamma lowered only the u-PA activity. In contrast, LPS and IFN gamma, but not TNF alpha, inhibited CSF-1-induced BMM c-myc mRNA levels, the lack of effect of TNF alpha dissociating the inhibition of DNA synthesis and decreased c-myc mRNA expression for this cytokine. These results indicate that certain biochemical responses are common to both growth factors and inhibitors of BMM DNA synthesis and that TNF alpha, IFN gamma, and LPS, even though they all have a common action in suppressing DNA synthesis, activate multiple signaling pathways in BMM, only some of which overlap or converge.  相似文献   

2.
The elicitation of delayed-type hypersensitivity (DTH) reactions in mice is due to the sequential action of two different, antigen-specific, Thy-1+ cells. We have previously cloned the early-acting DTH-initiating cell from nude mice that were immunized and boosted by contact sensitization with oxazolone (OX). This cell clone, WP-3.27, releases an antigen-specific factor (OX-F) that sensitizes mast cells such that specific antigen challenge will induce serotonin release which mediates the early phase of DTH. In normal mice contact sensitized with picryl chloride (PCl), a similar polyclonal factor (PCl-F) has a similar activity and is also known to bind to macrophages. Thus, we measured macrophage production of TNF alpha, IL-1, IL-6, and PGE2 in response to the hapten affinity-purified DTH-initiating factors OX-F and PCl-F. Both factors induced significant release of each cytokine and PGE2. The production of TNF alpha, IL-1, and IL-6 was measured by bioassays. Northern blot analysis showed rapid accumulation of cytokine mRNA (2-4 hr), while maximal production of PGE2 occurred at approximately 8 hr. These macrophage activating properties of OX-F and PCl-F were not due to contamination with LPS as determined by the low levels of LPS present in OX-F and PCl-F and by the failure of polymyxin B to inhibit factor-induced PGE2 and TNF alpha production. Also, macrophage activation was shown not to be due to the action of several lymphokines known to be produced by WP3.27. Separation of OX-F and PCl-F by preparative isoelectric focusing showed a similar pattern: there were two major peaks of PGE2-inducing activity observed for both factors (for PCl-F at pI of 2-3 and 5.0, and for OX-F at pI of 3.5-4 and 5.0), but not for a sham factor produced by WEHI-3 cells. The ability of DTH-initiating factors to rapidly induce macrophage cytokine release and PGE2 synthesis 4-6 hr later may suggest a role for these mediators during the respective early vascular and late cellular phases of inflammation in DTH.  相似文献   

3.
4.
Changes in the concentration of cytosolic Ca2+ are known to affect various macrophage functions; in particular, exposure in vitro to the Ca2+ ionophore A23187 primes macrophages for tumor cell killing. In the present report, it is shown that treatment with this ionophore similarly mimics IFN-gamma as a priming signal for induction of microbicidal activity. Incubation of mouse bone marrow-derived macrophages with 10(-7) to 10(-6) M A23187 (in the presence of Ca2+) led to intracellular killing of the protozoan parasite Leishmania enriettii within 24 h, provided LPS (1 ng/ml) was also present; no microbicidal activity was observed using either compound alone. A 4-h exposure to the ionophore in the presence of Ca2+ (priming phase) was sufficient to induce leishmanicidal activity upon reincubation with LPS, here acting as a necessary second signal. Addition of EGTA during the priming phase blocked intracellular killing upon subsequent LPS treatment; microbicidal activity could be restored by excess Ca2+, but not Mg2+, suggesting that changes in the concentration of cytosolic Ca2+ are sufficient to mediate the molecular events that lead to acquisition of microbicidal potential. Ionophore-induced leishmanicidal activity was paralleled by a stimulation of the hexosemonophosphate shunt pathway and production of nitrites, which are biochemical correlates of the activated state. In addition, sequential exposure to A23187 and LPS markedly stimulated macrophages to release TNF and PGE2, two agents thought to act as modulators of macrophage activation.  相似文献   

5.
6.
We examined the role of the monovalent cations Na+ and K+ in the events encompassing the release of O-2 by alveolar macrophages after stimulation with formyl methionyl phenylalanine (FMP). This was accomplished by determining the effect of changing the extracellular [Na+] and/or [K+] on FMP-stimulated O-2 production; and measuring 22Na+, 42K+ and 86Rb+ influx and efflux and intracellular [K+] for control and FMP-stimulated alveolar macrophages. Stimulated O-2 production was relatively insensitive to changes in extracellular K+ or Na+ concentrations until the [Na+] was decreased below 35 mM. At 4 mM [Na+], the rate of O-2 production remained at 75% of the maximal rate observed at physiological concentrations of [Na+]. Both influx and efflux of 22Na+ were stimulated above control rates by FMP. The increased rates of fluxes lasted for a few minutes suggesting a transient increase in membrane permeability to Na+. Ouabain partially inhibited 22Na+ efflux but had no effect on O-2 release. The influx of 86Rb+ and 42K+ was not altered by the addition of FMP but was virtually abolished in the presence of 10 microM ouabain or 1 mM quinine. In the presence of extracellular calcium, FMP-stimulated a prolonged (greater than 20 minutes) increase in 86Rb+ or 42K+ efflux which was inhibitable by 1 mM quinine. In the absence of extracellular calcium, FMP stimulation of K+ efflux was greatly diminished and was not affected by quinine, although quinine still inhibited O-2 production under these conditions. It was also observed that there was a loss of intracellular K+ when cells were stimulated by FMP in the presence of Ca+2, but not in the absence of Ca+2. Taken together, these results suggest a minimal direct role, if any, for K+ in the events that lead to FMP-stimulated O-2 release by alveolar macrophages.  相似文献   

7.
8.
9.
Macrophages are important effector cells in cell-mediated immunity against intracellular infection. Among cytokines that macrophages are able to release are IL-12 and TNF alpha. IL-12 is a critical linker between the innate and adaptive cell-mediated immunity, capable of Th1 differentiation and IFN gamma release by T and NK cells. IFN gamma is critically required for the activation of macrophage bactericidal activities. Recently emerging evidence suggests that macrophages are able to release not only IL-12 and TNF alpha but also IFN gamma. However, the mechanisms that control the release of each of these type 1 cytokines in macrophages appear different. While macrophages release TNF alpha in an indiscriminate and IL-12-independent way, the release of IL-12, particularly bioactive IL-12 p70, and IFN gamma is under tight control. We are just beginning to understand what controls the release of IL-12 p70, a question of fundamental importance to understanding the mechanisms underlying the initiation of cell-mediated immunity. Our recent findings have shed more insights into the regulatory mechanisms of macrophage IFN gamma responses. It has become evident that IL-12 is required not only for Th1 differentiation but also for IFN gamma responses by both T cells and macrophages during intracellular infection. In this overview, we have discussed about the current understanding of the regulation of macrophage type 1 cytokine responses during intracellular infection, based upon the recent findings from us and others.  相似文献   

10.
Macrophage polykaryons associated with the foreign body granuloma display several electrophysiological properties when studied with intracellular microelectrodes. One of the most evident properties is the slow hyperpolarization (2-5 s long, 10-60 mV amplitude), due to transient openings of Ca2+-dependent K+ channels, that is similar to those observed in macrophages. How this oscillation of membrane potential is triggered is not well known and the only way to repeatedly activate it under experimental control is through the intracellular injection of Ca2+. Although this technique is important for understanding the properties of the K+ channels, no information has been obtained about the way Ca2+ levels are raised and controlled in the cytosol. Slow hyperpolarizations can also be triggered by electrical stimulation, but reproducibility is low with cells bathed in physiological solutions. We then decided to investigate the effect of depolarization on the electrophysiological properties of macrophage polykaryons exposed to bathing solutions of several ionic compositions. We show in this paper that cell membrane depolarization induced by a long current pulse can trigger several patterns of membrane potential changes and that, in the absence of extracellular Na+, repetitive oscillations of decaying amplitudes are observed in almost all the cells. They are very similar to the slow hyperpolarizations, are dependent on the presence of extracellular Ca2+, and are blocked by quinine and D-600. Whole-cell patch clamp recording under voltage clamp conditions showed an outward current that oscillates and that also exhibits decaying amplitudes. The data presented here indicate that these oscillations are a consequence of the cyclic opening of the Ca2+-activated K+ channels and support the hypothesis that favors the participation of Ca2+ channels and of the Ca2+/Na+ exchange system in their triggering. These two mechanisms are not enough to explain either why the K+ channels close or why the membrane potential returns to the original level at the end of each cycle. The possibility of using these oscillations as a model to study the slow hyperpolarization is discussed.  相似文献   

11.
In this study, we examined the possible role of TNF-alpha and lymphotoxin (TNF-beta) as cofactors of macrophage activation. The results demonstrate that both TNF were capable of enhancing the cytostatic and cytolytic activity of murine peritoneal macrophages against Eb lymphoma cells. The potentiation of tumor cytotoxicity became apparent when macrophages from DBA/2 mice were suboptimally activated by either a T cell clone-derived macrophage-activating factor or by IFN-gamma plus LPS. Neither TNF-alpha nor TNF-beta could induce tumor cytotoxicity in IFN-gamma-primed macrophages, indicating that TNF cannot replace LPS as a triggering signal of activation. In LPS-resistant C3H/HeJ macrophages, which were unresponsive to IFN-gamma plus LPS, a supplementation with TNF fully restored activation to tumor cytotoxicity. Furthermore, TNF-alpha potentiated a variety of other functions in low-level activated macrophages such as a lactate production and release of cytotoxic factors. At the same time, TNF-alpha produced a further down-regulation of pinocytosis, tumor cell binding and RNA synthesis observed in activated macrophages. These data demonstrate new activities for both TNF-alpha and TNF-beta as helper factors that facilitate macrophage activation. In particular, the macrophage product TNF-alpha may serve as an autocrine signal to potentiate those macrophage functions that were insufficiently activated by lymphokines.  相似文献   

12.
In order to examine the endoplasmic reticulum responses in macrophages, we stimulate macrophage cell line RAW 264.7 by LPS. We found the phosphorylation of eukaryotic initiation factor eIF2α and the expression of ATF4, GADD34, and GADD153 in RAW 264.7 cells in late time by the relatively large amount of LPS stimulation. Unexpectedly LPS in the presence of ROS inhibitor N-acetyl-l-cysteine rapidly induced phosphorylation of eIF2α and induction of GADD34 expression. We measured intra-cytoplasmic TNFα production in LPS stimulated RAW 264.7 cells. TNFα production induced by LPS stimulation was greatly suppressed by N-acetyl-l-cysteine. This suppression occurred relatively early, which correlated with early eIF2α phosphorylation indicating ER stress mediated shutoff of protein synthesis.  相似文献   

13.
In murine bone marrow macrophages, lipopolysaccharide (LPS) induces apoptosis through the autocrine production of tumor necrosis factor-alpha (TNF-alpha), as demonstrated by the fact that macrophages from TNF-alpha receptor I knock-out mice did not undergo early apoptosis. In these conditions LPS up-regulated the two concentrative high affinity nucleoside transporters here shown to be expressed in murine bone marrow macrophages, concentrative nucleoside transporter (CNT) 1 and 2, in a rapid manner that is nevertheless consistent with the de novo synthesis of carrier proteins. This effect was not dependent on the presence of macrophage colony-stimulating factor, although LPS blocked the macrophage colony-stimulating factor-mediated up-regulation of the equilibrative nucleoside transport system es. TNF-alpha mimicked the regulatory response of nucleoside transporters triggered by LPS, but macrophages isolated from TNF-alpha receptor I knock-out mice similarly up-regulated nucleoside transport after LPS treatment. Although NO is produced by macrophages after LPS treatment, NO is not involved in these regulatory responses because LPS up-regulated CNT1 and CNT2 transport activity and expression in macrophages from inducible nitric oxide synthase and cationic amino acid transporter (CAT) 2 knock-out mice, both of which lack inducible nitric oxide synthesis. These data indicate that the early proapoptotic responses of macrophages, involving the up-regulation of CNT transporters, follow redundant regulatory pathways in which TNF-alpha-dependent- and -independent mechanisms are involved. These observations also support a role for CNT transporters in determining extracellular nucleoside availability and modulating macrophage apoptosis.  相似文献   

14.
This study was performed in order to examine whether the uraemic toxin, methylguanidine (MG), can modulate tumor necrosis factor alpha (TNF alpha) release by activated macrophages. In this study we have evaluated the ability of MG to influence TNF alpha release in vitro, in Escherichia coli lypopolysaccharide- (LPS)-stimulated J774 cells preincubated overnight with MG, and in vivo in rats treated with MG before and after LPS challenge. Parallel experiments employing N(G)-nitro-L-arginine methyl esther (L-NAME) were also carried out for comparison. The effect of LPS (6 x 10(3) u/ml) on TNF alpha release by J774, following overnight incubation with MG or L-NAME (1 mM), was examined 3 hours after LPS challenge. LPS-stimulated J774 released 287.83+/-88 u/ml TNF alpha into the culture medium. MG (1 mM) significantly inhibited TNF alpha release by 73% (P<0.05). L-NAME (1 mM) significantly inhibited TNF alpha release too by 72.88% (P<0.05). The effect of MG and L-NAME have been also studied in vivo. Serum TNF alpha levels in LPS treated rats 2 h after LPS challenge were 88.33+/-31.7 u/ml as compared to the serum TNF alpha levels of control rats (undetectable). Treatment of rats with MG (30 mg/kg, i.p.) strongly and significantly reduced TNF alpha release (98.71% inhibition; with P<0.001); in the same experimental setting L-NAME (10 mg/kg, i.p.) also significantly reduced TNF alpha serum levels (76.47% inhibition; with P<0.01). These results could indicate that immune disfunction related to uremia may be related to the inhibitory capability of uremic catabolyte, MG, on TNF alpha synthesis and release.  相似文献   

15.
16.
The effect of bacterial lipopolysaccharide (LPS) on macrophage receptors for tumor necrosis factor/cachectin (TNF-R) was studied. At equilibrium, iodinated recombinant human TNF alpha (rTNF alpha) bound to 1100 +/- 200 sites/cell on macrophage-like RAW 264.7 cells with a Kd of 1.3 +/- 0.1 x 10(-9) M. Preexposure of RAW 264.7 cells to 10 ng/ml LPS for 1 h at 37 degrees C resulted in complete loss of cell surface TNF alpha binding sites. 50% loss ensued after 1 h with 0.6 ng/ml LPS, or after 15 min with 10 ng/ml LPS. Complete loss of TNF alpha binding sites occurred without change in numbers of complement receptor type 3. No decrease in TNF-R followed preexposure to LPS at 4 degrees C, nor could LPS displace 125I-rTNF alpha from its binding sites. Although TNF-R disappeared from the surface of intact macrophages following exposure to LPS, specific TNF alpha binding sites were unchanged in permeabilized macrophages, indicating that TNF-R were rapidly internalized. Conditioned media from LPS-treated RAW 264.7 cells induced 30% down-regulation of TNF-R on macrophages from LPS-hyporesponsive mice (C3H/HeJ), suggesting that a soluble macrophage product may be responsible for a minor portion of the LPS effect. Additional evidence against endogenous TNF alpha being the major cause of TNF-R internalization was the rapid onset of the effect of LPS on TNF-R compared to the reported onset of TNF alpha production, the relatively high concentrations of exogenous rTNF alpha required to mimic the effect of LPS, and the inability of TNF alpha-neutralizing antibody to block the effect of LPS. LPS-induced down-regulation of TNF-R was complete or nearly complete not only in RAW 264.7 cells, but also in primary macrophages of both human and murine origin, was less marked in human endothelial cells, and was absent in human granulocytes and melanoma cells and mouse L929 cells. Thus, in situ, macrophages and some other host cells may be resistant to the actions of TNF alpha produced during endotoxinemia, because such cells may internalize their TNF-R in response to LPS before TNF alpha is produced.  相似文献   

17.
Measurements were made of the electrophysiological and cAMP response to changes in extracellular [Ca2+] and to hormone application in a bone cell clone. Both transient and long-term electrophysiological responses were studied. An increase in extracellular [Ca2+] usually resulted in a transient hyperpolarization of about 60-sec duration. In addition, increases in extracellular [Ca2+] from 0.9 to 1.8 mM and from 1.8 to 3.6 mM resulted in long-term hyperpolarization and increased potential fluctuations. Increasing bathing [Ca2+] until the membrane potential reached the K+ equilibrium level resulted in a significant decrease in fluctuations. Addition to the bathing medium of quinine, a putative blocker of the Ca2+-dependent K+ channel, resulted in long-term depolarization of the mean membrane potential, and a long-term decrease in potential fluctuations. Addition of Mg2+, a mild antagonist of Ca2+ entry into the cell, produced transient depolarization and reduction of potential fluctuations. These effects suggest that the potential fluctuations reflect cytoplasmic [Ca2+] fluctuations via Ca2+-dependent K+ membrane channels. Under an extracellular [Ca2+] of 1.8 mM, the application of prostaglandin E2 (PGE2), isoproterenol, and parathyroid hormone produced no significant effect on mean membrane potential or on the sustained potential fluctuations, but PGE2 did significantly raise intracellular cAMP. Under an increased bathing [Ca2+], significant changes in mean potential and fluctuations did occur in response to PGE2, but not in response to the other hormones, while the PGE2 effect on cAMP was not greatly changed. Hyperpolarizing transients of about 30-sec duration occurred in response to all of the hormones, particularly at an extracellular [Ca2+] of 3.6 mM. Thus, there are both transient and long-term electrophysiological responses to hormone application, with only the long-term response correlated with the production of cAMP. These electrophysiological responses may represent separate transient and long-term calcium transport responses to hormone application.  相似文献   

18.
Lipopolysaccharide (LPS, endotoxin) is a potent stimulator of tumor necrosis factor alpha (TNF alpha) synthesis and secretion in mouse macrophage tumor cells (Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K., and Raetz, C. H. R. (1991) J. Biol. Chem. 266, 19490-19498). In contrast, addition of LPS (10 ng/ml) to human monomyelocytic (Mono Mac 6) cells induces very little production of TNF alpha, as judged by immunoassay of the growth medium. When 30 ng/ml 4-beta-phorbol-12-myristate 13-acetate (PMA) is added together with LPS, large amounts of TNF alpha are secreted. PMA alone is inactive. Maximal TNF alpha levels in the medium are achieved at 1 ng/ml of LPS. Protein kinase C inhibitors, such as H7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine), staurosporine, and sphingosine, reduce TNF alpha secretion stimulated by PMA. The effect of PMA has been investigated at each stage of TNF alpha biogenesis. Treatment of Mono Mac 6 cells with LPS alone results in rapid, transient, and full expression of TNF alpha mRNA. Concomitant addition of PMA does not increase TNF alpha mRNA synthesis any further, but it prolongs the half-life of TNF alpha mRNA about 3-fold. However, mRNA stabilization does not account for the striking effect of PMA on TNF alpha secretion. Analysis of TNF alpha synthesis and secretion by immunoprecipitation indicates that LPS alone is fully effective in stimulating the formation of the intracellular 26-kDa TNF alpha precursor. LPS alone is not sufficient to allow processing of the precursor and secretion of mature 17-kDa TNF alpha. The rate of TNF alpha secretion observed immediately after the addition of PMA to LPS-pretreated cells is similar to the maximum rate from LPS/PMA-treated cells, but without the lag observed in cells after being exposed to LPS and PMA simultaneously. In summary, PMA is required for the completion of TNF alpha precursor processing and secretion in LPS-treated human Mono Mac 6 cells, whereas murine RAW cells are able to complete the terminal steps of TNF alpha processing in the absence of PMA.  相似文献   

19.
Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.  相似文献   

20.
1. 4-Aminopyridine (4-AP)-induced contractures have been compared with those evoked by caffeine and quinine on the toad rectus abdominis muscle. 2. All three compounds produced slowly-developing sustained contractures. The time to half maximal contracture and relaxation was significantly longer for 4-AP than for caffeine or quinine. 3. Verapamil and manganese inhibited 4-AP, caffeine and quinine-induced contractures. 4. Ca2+-free-EGTA Ringer and procaine severely inhibited caffeine and quinine responses, but 4-AP contractures were relatively unaffected. 5. In depolarizing (100 mM K+) Ringer solution, caffeine and quinine responses were reduced to 6-9% of their controls. 4-AP responses were reduced by about 25%. 6. It is concluded that in the toad rectus muscle, 4-AP-induced contractures differ from those produced by caffeine and quinine, and appear to rely mainly on the release of intracellular located Ca2+, while caffeine and quinine are considered to act predominantly on plasma membrane sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号