首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The triplet consisting of two monophyletic taxa and one paraphyletic taxon as constructive element of the phylogenetic system Evolution has produced very many novelties (apomorphies). Most of them are small and relatively inconstant, these are more or less indicative of the phylogenetic relationships between closely related species. They cannot be the constitutive character of a supraspecific taxon that exists since a long time and comprises many diversified species. Such a taxon of higher rank can only be characterized by an improbable, rare novelty that has developed only once and has been preserved in all descendent species. Two consecutive apomorphies of this persistent type (‘fixed apomorphies’) characterize three supraspecific taxa, the triplet “A”, “B” and “A minus B” (Fig. 1). The group “A minus B” is rejected in Hennig's theory because it is ‘paraphyletic’, but it is not an artefact created by the systematicist. It is an inevitable mathematical consequence of the differentiatison of the group “B” within the group “A”. Being the result of a subtraction, it is necessarily associated with the two monophyletic partners in the triplet, as it is delimited on one side by the synapomorphy of the group “A”, of which it is a part, and on the other side by the autapomorphy of the separate group “B”. Traditional classifications often include paraphyletic groupings that are inconsistent with phylogenetics, e. g. the Reptilia and the Apterygota. The fault in such cases is that these groups are extended beyond the limits of a triplet and cover more than a single interval between consecutive monophyletic taxa. Paraphyletic groups are admitted in the phylogenetic system only for bridging the gaps in our cladistic information. According to HENNIG'S theory, all supraspecific taxa should be arranged two by two as sister-groups originating from one ancestral species and comprising all descendents of that species. The fixed evolutionary novelties which characterize higher supraspecific taxa are, however, rare and scattered. It is highly improbable that they have developed in sister species, therefore the taxa marked by them cannot be sister-groups (except in very rare cases). In HENNIG'S earlier papers, e. g. in his system of Lepidoptera (1953: 46–49), the alleged ‘sister-groups' are, in reality, the groups “B” and “A minus B” of a triplet (see Fig. 2). In his revised concept (1957 and later), two autapomorphic groups which are most closely related in the recent fauna (“B” and “C” in Fig. 3) are called ‘sister-groups’. But these have originated independently from different ancestors in a plesiomorphic complex of extinct species and are more closely related to parts of this complex than to each other. True sister-groups (“Bx” and “Cx” in Fig. 4) would be formed if these related plesiomorphic species were included, but this extension of the ’backward‘ border of the taxon is not justified by synapomorphy (in the terms of logic, it is a ’metabasis‘), and it would make the classification of fossil species impossible, unless these show at least one synapomorphy with either “B” or “C”. In the system of the recent fauna the sister-groups are identical with the autapomorphic groups, because the plesiomorphic species are extinct. The natural system based on synapomorphies and autapomorphies is the triplet-system as outlined in Figure 6. It is not a new type of classification, but its theoretical foundation was missing, and precise instructions were needed for its use in phylogenetics. The information obtained by HENNIG'S method is entirely preserved in this system and can be retrieved from it, and both recent and extinct species can be classified together. The disadvantage of the triplet-system is that it contains twice as many taxa as HENNIG'S classification. This complexity will limit its use in the practice of taxonomy, but it may be simplified by transforming the system into a sequence of paraphyletic taxa terminating in a single monophylum.  相似文献   

2.
Ernst Haeckel, who first introduced the term ‘monophyly’ into the biological literature, has in the past been appealed to in adjudication of the modern use of that concept. A contextual analysis of his writings reveals an inconsistent use of the term ‘monophyly’ by Haeckel. Morphological phylogeny was decoupled in Haeckel’s thinking from the evolutionary history of taxa. Monophyly could mean the derivation of one taxon from another, ancestral one, where these taxa could be species or of supraspecific rank. Monophyly could also mean the phylogenetic differentiation of a diversity of organismal ‘forms’ (morphologies) from a common primitive ‘form’ (morphological stage). And finally, monophyly, as also polyphyly, could apply to the origin of specific anatomical structures, in which case the monophyly/polyphyly of anatomical structures needed not to correlate with the monophyly/polyphyly of the taxon characterized by these structures. With respect to the issue of the unity and reality of monophyletic taxa, Haeckel’s writings again are indeterminate as is his stance on the monophyletic origin of life.  相似文献   

3.
With approximately 3000 marine species, Tunicata represents the most disparate subtaxon of Chordata. Molecular phylogenetic studies support Tunicata as sister taxon to Craniota, rendering it pivotal to understanding craniate evolution. Although successively more molecular data have become available to resolve internal tunicate phylogenetic relationships, phenotypic data have not been utilized consistently. Herein these shortcomings are addressed by cladistically analyzing 117 phenotypic characters for 49 tunicate species comprising all higher tunicate taxa, and five craniate and cephalochordate outgroup species. In addition, a combined analysis of the phenotypic characters with 18S rDNA-sequence data is performed in 32 OTUs. The analysis of the combined data is congruent with published molecular analyses. Successively up-weighting phenotypic characters indicates that phenotypic data contribute disproportionally more to the resulting phylogenetic hypothesis. The strict consensus tree from the analysis of the phenotypic characters as well as the single most parsimonious tree found in the analysis of the combined dataset recover monophyletic Appendicularia as sister taxon to the remaining tunicate taxa. Thus, both datasets support the hypothesis that the last common ancestor of Tunicata was free-living and that ascidian sessility is a derived trait within Tunicata. “Thaliacea” is found to be paraphyletic with Pyrosomatida as sister taxon to monophyletic Ascidiacea and the relationship between Doliolida and Salpida is unresolved in the analysis of morphological characters; however, the analysis of the combined data reconstructs Thaliacea as monophyletic nested within paraphyletic “Ascidiacea”. Therefore, both datasets differ in the interpretation of the evolution of the complex holoplanktonic life history of thaliacean taxa. According to the phenotypic data, this evolution occurred in the plankton, whereas from the combined dataset a secondary transition into the plankton from a sessile ascidian is inferred. Besides these major differences, both analyses are in accord on many phylogenetic groupings, although both phylogenetic reconstructions invoke a high degree of homoplasy. In conclusion, this study represents the first serious attempt to utilize the potential phylogenetic information present in phenotypic characters to elucidate the inter-relationships of this diverse marine taxon in a consistent cladistic framework.  相似文献   

4.
Least-inclusive taxonomic unit: a new taxonomic concept for biology   总被引:2,自引:0,他引:2  
Phylogenetic taxonomy has been introduced as a replacement for the Linnaean system. It differs from traditional nomenclature in defining taxon names with reference to phylogenetic trees and in not employing ranks for supraspecific taxa. However, 'species' are currently kept distinct. Within a system of phylogenetic taxonomy we believe that taxon names should refer to monophyletic groups only and that species should not be recognized as taxa. To distinguish the smallest identified taxa, we here introduce the least-inclusive taxonomic unit (LITU), which are differentiated from more inclusive taxa by initial lower-case letters. LITUs imply nothing absolute about inclusiveness, only that subdivisions are not presently recognized.  相似文献   

5.
The order Strophomenida was an ecologically abundant and taxonomically diverse group of Palaeozoic brachiopods that originated in the earliest Ordovician and went extinct in the Carboniferous. During their long geological range, the Strophomenida survived two of the ‘Big Five’ mass extinction events, the Late Ordovician and the Late Devonian, suggesting that they are potentially informative taxa for studying the evolutionary effects of these two distinct mass extinctions, each with drastically different forcing mechanisms. However, while there have been previous phylogenetic studies on smaller groups within the Strophomenida, the phylogenetic relationships of the whole group are still largely unknown. The group has been divided into two major superfamilies, the Strophomenoidea (strophomenoids) and the Plectambonitoidea (plectambonitoids). Despite being treated as separate clades, the plectambonitoids may form a paraphyletic grade into the strophomenoids. We present a detailed higher‐level parsimony‐based phylogenetic analysis of the Strophomenida, consisting of 69 characters and 62 exemplar species sampled from the majority of the taxonomically defined families/subfamilies. Several species of basal chonetids (strophochonetids) were also included in this analysis, as they may be closely related to the Strophomenida and share several characters with both the plectambonitoids and strophomenoids. The phylogenetic analysis suggests the plectambonitoids, as originally defined, are paraphyletic to the monophyletic strophomenoids. The basal chonetids are reconstructed as a monophyletic group that is sister to the strophomenoids, suggesting that their proper placement might be within the Strophomenida. The topology also suggests that at least 17 of the taxonomically defined strophomenoid and plectambonitoid families are likely to be monophyletic. The Plectambonitidae and the Taffiidae as defined are paraphyletic, and the Grorudiidae and Leptostrophiidae are polyphyletic. Furthermore, subfamilies Leptodontellinae, Dicoelostrophiinae, Palaeostrophomeninae and Aegiromeninae are raised to the level of family. When analysed within this phylogenetic context, the Late Ordovician mass extinction event had little effect on the large‐scale evolution of the group.  相似文献   

6.
With 556 species described to date, Kalyptorhynchia includes about one‐third of all species of rhabdocoel flatworms. In this study, we present the first molecular phylogenetic analysis of this taxon. The final analysis comprises 110 species. These represent 11 of the 17 known families. The largest family (241 known species), Polycystididae, is represented by nine of 10 subfamilies and 33 of the 58 genera. Sequence data from 18S rDNA and 28S rDNA were analysed using maximum likelihood and Bayesian approaches. Of the two taxa traditionally recognised within Kalyptorhynchia, Eukalyptorhynchia and Schizorhynchia, only Schizorhynchia is monophyletic. All eukalyptorhynch families, except Cicerinidae, are monophyletic. On the other hand, two of the three schizorhynch families included are not monophyletic. Within Polycystididae, the traditional taxonomy was not reflected in our phylogenetic analyses and most subfamilies are polyphyletic. These results suggest that current classification, mostly based on characters of the genital system, suffers from homoplasy. Where possible, a revised classification, taking into account these new findings, is given.  相似文献   

7.
Phylogenetic analysis of the Malacostraca (Crustacea)   总被引:13,自引:0,他引:13  
The Malacostraca comprises about 28 000 species with a broad disparity in morphology, anatomy, embryology, behaviour and ecology. The phylogenetic relationships of the major taxa are still under debate. Is the Leptostraca the sister group of the remaining Malacostraca, or is this taxon more closely related to other Crustacea? Does the Stomatopoda or the Bathynellacea represent the most basal taxon within the remaining taxa? Is the Peracarida monophyletic or are some peracarid taxa more closely related to other ‘caridoid’ taxa? Is the Thermosbaenacea part of the Peracarida or its sister group, and how much support is there for a taxon Amphipoda + Isopoda? To answer these questions a phylogenetic analysis of the Malacostraca combining different phylogenetic approaches was undertaken. In a first step, the monophyly of the Malacostraca including the Leptostraca is shown using the ‘Hennigian approach’. A computer cladistic analysis of the Malacostraca was carried out with NONA and PEE ‐WEE , based on 93 characters from morphology, anatomy and embryology. Nineteen higher malacostracan taxa are included in our analysis. Taxa whose representatives are exclusively fossils were not included. The Leptostraca was used as an operational out‐group. The present analysis supports the basal position of the Stomatopoda. Syncarida and Peracarida (including Thermosbaenacea) are supported as monophyletic, the Eucarida is not. Instead a sister‐group relationship is suggested between Euphausiacea and Peracarida (including Thermosbaenacea), with the Syncarida as the sister group to both taxa. Certain embryonic characters are interpreted as support for the monophyly of the Peracarida (without Thermosbaenacea) because convergences or reversals of these characters seem implausible. Within the Peracarida, the Mysidacea (Lophogastrida + Mysida) represents the sister group to the remaining taxa. A sister‐group relationship between Amphipoda and Isopoda is not supported.  相似文献   

8.
Many taxon names in any classification will be composed of taxa that have yet to be demonstrated as monophyletic, that is, characterized by synapomorphies. Such taxa might be called aphyletic, the flotsam and jetsam in systematics, simply meaning they require taxonomic revision. The term aphyly is, however, the same as, if not identical to, Hennig's “Restkörper” and Bernardi's merophyly. None of these terms gained common usage. We outline Hennig's use of “Restkörper” and Bernardi's use of merophyly and compare it to aphyly. In our view, application of aphyly would avoid the oft made assumption that when a monophyletic group is discovered from within an already known and named taxon, then the species left behind are rendered paraphyletic. By identifying the flotsam and jetsam in systematics, we can focus on taxa in need of attention and avoid making phylogenetic faux pas with respect to their phylogenetic status.  相似文献   

9.
The insect order Trichoptera (caddisflies) forms the second most species‐rich monophyletic group of animals in freshwater. So far, several attempts have been made to elucidate its evolutionary history with both morphological and molecular data. However, none have attempted to analyse the time frame for its diversification. The order is divided into three suborders – Annulipalpia, Integripalpia and ‘Spicipalpia’. Historically, the most problematic taxon to place within the order is ‘Spicipalpia’, whose larvae do not build traditional cases or filtering nets like the majority of the caddisflies. They have previously been proposed to be the sister group of all other Trichoptera or more advanced within the order, with equivocal monophyly and with different interordinal placements among various studies. In order to resolve the evolutionary history of the caddisflies as well as timing their diversification, we utilized fragments of three nuclear (carbamoylphosphate synthethase, isocitrate dehydrogenase and RNA polymerase II) and one mitochondrial (cytochrome oxidase I) protein coding genes, with 16 fossil trichopteran taxa used for time calibration. The ‘spicipalpian’ families are recovered as ancestral to all other caddisflies, though paraphyletic. We recover stable relationships among most families and superfamilies, resolving many previously unrecognized phylogenetic affinities amongst extant families. The origin of Trichoptera is estimated to be around 234 Ma, i.e. Middle – Late Triassic.  相似文献   

10.
Previous attempts to resolve plesiosaurian phylogeny are reviewed and a new phylogenetic data set of 66 taxa (67% of ingroup taxa examined directly) and 178 characters (eight new) is presented. We recover two key novel results: a monophyletic Plesiosauridae comprising Plesiosaurus dolichodeirus, Hydrorion brachypterygius, Microcleidus homalospondylus, Occitanosaurus tournemirensis and Seeleyosaurus guilelmiimperatoris; and five plesiosaurian taxa recovered outside the split between Plesiosauroidea and Pliosauroidea. These taxa are Attenborosaurus conybeari, ‘Plesiosaurusmacrocephalus and a clade comprising Archaeonectrus rostratus, Macroplata tenuiceps and BMNH 49202. Based on this result, a new name, Neoplesiosauria, is erected for the clade comprising Plesiosauroidea and Pliosauroidea. Taxon subsamples of the new dataset are used to simulate previous investigations of global plesiosaurian relationships. Based on these simulations, most major differences between previous global phylogenetic hypotheses can be attributed to differences in taxon sampling. These include the position of Leptocleididae and Polycotylidae and the monophyly or paraphyly of Rhomaleosauridae. On this basis we favour the results recovered by our, larger analysis. Leptocleididae and Polycotylidae are sister taxa, forming a monophyletic clade within Plesiosauroidea, indicating that the large‐headed, short‐necked ‘pliosauromorph’ body plan evolved twice within Plesiosauria. Rhomaleosauridae forms the monophyletic sister taxon of Pliosauridae within Pliosauroidea. Problems are identified with previous phylogenetic definitions of plesiosaurian clades and new, stem‐based definitions are presented that should maintain their integrity over a range of phylogenetic hypotheses. New, rank‐free clade names Cryptoclidia and Leptocleidia are erected to replace the superfamilies Cryptoclidoidea and Leptocleidoidea. These were problematic as they were nested within the superfamily Plesiosauroidea. The incongruence length difference test indicates no significant difference in levels of homoplasy between cranial and postcranial characters.  相似文献   

11.
Evolutionary relationships of the Pectinidae were examined using two mitochondrial genes (12S rRNA, 16S rRNA) and one nuclear gene (Histone H3) for 46 species. Outgroup taxa from Propeamussidae, Spondylidae and Limidae were also sequenced to examine the impact of outgroup choice on pectinid topologies. Our phylogenetic analyses resolved the Pectinidae as monophyletic, but many of the subfamilies and tribes within the family do not form monophyletic clades. The paraphyletic Aequipectinini group is the most basal member of the Pectinidae, with the Chlamydinae and Palliolinae representing the most recently derived pectinid groups. These results are in contrast with the current morphological hypothesis of Pectinidae evolution, which suggests the Chlamydinae and Pallioline are basal groups within the Pectinidae. Ingroup topology was found to be sensitive to outgroup choice and increasing taxon sampling within the Pectinidae resulted in more robust phylogenies.  相似文献   

12.
Grasshoppers in the genus Melanoplus have undergone a radiation in the 'sky islands' of western North America, with many species originating during the Pleistocene. Despite their recent origins, phylogenetic analyses indicate that all the species exhibit monophyletic or paraphyletic gene trees. The objectives of this study were to determine whether the monophyletic genealogies are the result of a bottleneck at speciation and to investigate the extent to which the different phylogenetic states of eight species (i.e. monophyletic versus paraphyletic gene trees) can be ascribed to the effects of speciation. A coalescent simulation was used to test for a bottleneck at speciation in each species. The effective population sizes and demographic histories of species were compared across taxa to evaluate the possibility that the paraphyly versus monophyly of the species reflects differential rates of lineage loss rather than speciation mode. While coalescent analyses indicate that the monophyly of Melanoplus species might not be indicative of bottlenecks at speciation, the results suggest that the paraphyletic gene trees may reflect the demography of speciation, involving localized divergences in the ancestral species. With respect to different models of Pleistocene divergence, the data do not support a model of founder-effect speciation but are compatible with divergence in allopatric refugia.  相似文献   

13.
The study of parasite evolution relies on the identification of free-living sister taxa of parasitic lineages. Most lineages of parasitic helminths are characterized by an amazing diversity of species that complicates the resolution of phylogenetic relationships. Acanthocephalans offer a potential model system to test various long-standing hypotheses and generalizations regarding the evolution of parasitism in metazoans. The entirely parasitic Acanthocephala have a diversity of species that is manageable with regards to constructing global phylogenetic hypotheses, exhibit variation in hosts and habitats, and are hypothesized to have close phylogenetic affinities to the predominately free-living Rotifera. In this paper, I review and test previous hypotheses of acanthocephalan phylogenetic relationships with analyses of the available 18S rRNA sequence database. Maximum-parsimony and maximum-likelihood inferred trees differ significantly with regard to relationships among acanthocephalans and rotifers. Maximum-parsimony analysis results in a paraphyletic Rotifera, placing a long-branched bdelloid rotifer as the sister taxon of Acanthocephala. Maximum-likelihood analysis results in a monophyletic Rotifera. The difference between the two optimality criteria is attributed to long-branch attraction. The two analyses are congruent in terms of relationships within Acanthocephala. The three sampled classes are monophyletic, and the Archiacanthocephala is the sister taxon of a Palaeacanthocephala + Eoacanthocephala clade. The phylogenetic hypothesis is used to assess the evolution of host and habitat preferences. Acanthocephalan lineages have exhibited multiple radiations into terrestrial habitats and bird and mammal definitive hosts from ancestral aquatic habitats and fish definitive hosts, while exhibiting phylogenetic conservatism in the type of arthropod intermediate host utilized.  相似文献   

14.
Phylogenetic analysis of higher-level relationships of Odonata   总被引:3,自引:1,他引:2  
Abstract. This is the most comprehensive analysis of higher‐level relationships in Odonata conducted thus far. The analysis was based on a detailed study of the skeletal morphology and wing venation of adults, complemented with a few larval characters, resulting in 122 phylogenetically informative characters. Eighty‐five genera from forty‐five currently recognized families and subfamilies were examined. In most cases, several species were chosen to serve as exemplars for a given genus. The seven fossil outgroup taxa included were exemplar genera from five successively more distant odonatoid orders and suborders: Tarsophlebiidae (the closest sister group of Odonata, previously placed as a family within ‘Anisozygoptera’), Archizygoptera, Protanisoptera, Protodonata and Geroptera. Parsimony analysis of the data, in which characters were treated both under equal weights and implied weighting, produced cladograms that were highly congruent, and in spite of considerable homoplasy in the odonate data, many groupings in the most parsimonious cladograms were well supported in all analyses, as indicated by Bremer support. The analyses supported the monophyly of both Anisoptera and Zygoptera, contrary to the well known hypothesis of zygopteran paraphyly. Within Zygoptera, two large sister clades were indicated, one comprised of the classical (Selysian) Calopterygoidea, except that Amphipterygidae, which have traditionally been placed as a calopterygoid family, nested within the other large zygopteran clade comprised of Fraser's ‘Lestinoidea’ plus ‘Coenagrionoidea’ (both of which were shown to be paraphyletic as currently defined). Philoganga alone appeared as the sister group to the rest of the Zygoptera in unweighted cladograms, whereas Philoganga + Diphlebia comprised the sister group to the remaining Zygoptera in all weighted cladograms. ‘Anisozygoptera’ was confirmed as a paraphyletic assemblage that forms a ‘grade’ towards the true Anisoptera, with Epiophlebia as the most basal taxon. Within Anisoptera, Petaluridae appeared as the sister group to other dragonflies.  相似文献   

15.
Absent characters (negative characters) are difficult to assess and their correct interpretation as symplesiomorphies, synapomorphies or convergencies (homoplasies) is one of the greatest challenges in phylogenetic systematics. Different phylogenetic assessments often result in contradictory phylogenetic hypotheses, in which the direction of evolutionary changes is diametrically opposed. Especially in deciding between primary (plesiomorphic) and secondary (apomorphic) absence, false conclusions may be reached if only the outgroup comparison and the principle of parsimony are employed without attempting any biological evaluation or interpretation of characters. For example, in the higher‐level systematization of the Annelida and related taxa different assessments of absent characters have led to conflicting hypotheses about the phylogenetic relationships and the ground pattern of the annelid stem species. Varying phylogenetic interpretations regarding the absence of the chemosensory nuchal organs in the clitellates and their presence in polychaetes initiated a controversy that produced two alternative phylogenetic hypotheses: (1) the Clitellata are highly derived Annelida related to a subtaxon within the, in this case, paraphyletic ‘Polychaeta’ or (2) the Clitellata are comparatively primitive Annelida representing the sister group of a monophyletic taxon Polychaeta. In the former, the absence of nuchal organs in the Clitellata is regarded as a secondary character, in the latter as primary. As most Clitellata are either limnetic or terrestrial, we must ask which characters are plesiomorphies, taken from their marine stem species without changes. In addition to a thorough investigation and evaluation of clitellate characters, a promising approach to these questions is to look for such characters in limnetic and terrestrial annelids clearly not belonging to the Clitellata. A similar problem applies to the evaluation of the position of the Echiura, which lack both segmentation and nuchal organs. Evidence is presented that in both taxa these absent characters represent derived, apomorphic character states. The consequences for their phylogenetic position and the questionable monophyly of the Polychaeta are discussed. The conclusion drawn from morphological character assessments is in accordance with recently published hypotheses based on molecular data.  相似文献   

16.
The Brachyura, within the decapod crustaceans, is one of the most species-rich taxa with up to 10 000 species. However, its phylogenetic history, evolution and fossil record remain subjects of controversy. In our study, we examined the phylogenetic relationships of the Brachyura based on morphological characters of the foregut. The cladistic analysis supports a monophyletic Brachyura including the Dromiidae and Raninidae. A clade comprising Dromiidae and Dynomenidae forms the most basal assemblage within the Brachyura, followed by the Homolidae and Latreilliidae. As a result, neither Podotremata nor Archaeobrachyura form a clade. In contrast, foregut data suggest that the classical taxon Oxystomata, comprising Calappidae, Parthenopidae, Dorippidae, Leucosiidae, Cymonomidae and Raninidae, is monophyletic. This makes the Heterotremata paraphyletic or polyphyletic. A newly established taxon, Neobrachyura, embraces some representatives of the Heterotremata and the monophyletic Thoracotremata.  相似文献   

17.
Labral spines are sharp projections of the apertural lip found in some marine gastropods that are used to penetrate hard-shelled prey. The majority of gastropod genera that contain labral spine-bearing species are found in the subfamily Ocenebrinae (Gastropoda: Muricidae). To reconstruct the evolutionary history of labral spine-bearing and labral spine-lacking gastropods in the eastern Pacific (EP) Ocean, partial sequences of two mitochondrial genes (cytochrome oxidase I and 12S rRNA) were obtained from representative taxa. Despite high nucleotide bias, a variety of phylogenetic reconstruction methods produced the same tree topology. The traditional taxonomic view that all "Nucella-like" spine-bearing taxa in the EP belong to a monophyletic "Acanthina" is rejected due to nonmonophyly of this group. The more recently recognized "Acanthinucella" is also not monophyletic, and we therefore propose the new genus Mexacanthina for two Mexican species formerly assigned to Acanthinucella. The genus Ocinebrina, which first appears in the middle Eocene, is not a stem EP ocenebrine lineage and may also not be a monophyletic clade. Tracing the evolutionary history of labral spines among extant lineages indicates that the absence of a labral spine is ancestral for all EP ocenebrines. Ancestral conditions could not be resolved unambiguously for all nodes of the phylogeny based on extant taxa. However, by jointly considering both molecular phylogenetic relationships and the phylogenetic affinities of several extinct taxa, all remaining character state transformation can be inferred unambiguously. Based on this analysis, a labral spine likely evolved independently in at least four lineages of EP ocenebrines. Although homoplasy appears to characterize labral spine evolution among ocenebrine gastropods, the structural position of a labral spine was evolutionarily altered in one lineage, indicating that different types of labral spines do not necessarily reflect convergent evolution.  相似文献   

18.
Speciation is an ongoing process. Many recognized species are fully divergent from each other and their ancestors, whereas others are in earlier stages in the diversification process. Such incipient speciation may create patterns when one or a few populations are phenotypically distinct, but lack genomic level coalescence from each other or from their ancestral species. As a result, such progenitor-derivative species pairs are likely to lack reciprocal monophyly or generate paraphyletic ancestral species. Here we examine phylogenetic patterns in the Columnea strigosa (Gesneriaceae) complex to evaluate whether populations that have been named C. kucyniakii are reciprocally monophyletic with C. strigosa, its presumed ancestral species. Molecular phylogenetic results do not support reciprocal monophyly of the two species, implying that incipient speciation is occurring within the C. strigosa complex. We hereby recommend that C. kucyniakii be recognized at the specific rank despite the fact that it creates a paraphyletic C. strigosa. These findings bear importance in taxonomic decisions about paraphyletic taxa and recognizing evolutionary and morphologically distinct lineages.  相似文献   

19.
Nemeth  S.  Mai  T.T.  Zechman  F.W. 《Journal of phycology》2000,36(S3):51-52
Phylogenetic hypotheses for the pantropical marine green algal genus, Caulerpa , were inferred based on analyses of nuclear-encoded rDNA internal transcribed spacer (ITS) sequences. Results of these analyses were used to assess the correspondence between rDNA phylogeny and traditional sectional taxonomy, to identify synapomorphic morphological characters (including assimilator morphology and chloroplast ultrastructure), and to examine marine biogeographic hypotheses for the genus. Ribosomal DNA ITS sequences were aligned for thirty-three species and intraspecific taxa of Caulerpa. Results indicate limited correspondence between phylogeny and sectional taxonomy for the genus, (e.g., the sections Filicoideae and Sedoideae were not monophyletic). In contrast, chloroplast morphology could be mapped to the tree topology with limited homoplasy. Pantropical isolates of the filicoidean species, Caulerpa sertularioides and Caulerpa mexicana each formed monophyletic groups. Caulerpa reyesii was included as a derived taxon within the Caulerpa taxifolia clade, suggesting that these species were conspecific and affirmed the lack of correspondence between phylogeny and assimilator morphology. Isolates and various intraspecific taxa of Caulerpa racemosa did not form a monophyletic group. Instead, these taxa formed a heterogeneous assemblage with other sedoidean and filicoidean taxa. Within the C. sertularioides clade, Caribbean and Atlantic isolates formed a basal paraphyletic group, whereas eastern and western Pacific isolates formed a more derived monophyletic group. Therefore, these results are not consistent with an Indo-West Pacific origin of this species.  相似文献   

20.
Partial DNA sequences from two mitochondrial (mt) and one nuclear gene (cytochrome b, 12S rRNA, and C-mos) were used to estimate the phylogenetic relationships among the six extant species of skinks endemic to the Cape Verde Archipelago. The species form a monophyletic unit, indicating a single colonization of the islands, probably from West Africa. Mabuya vaillanti and M. delalandii are sister taxa, as indicated by morphological characters. Mabuya fogoensis and M. stangeri are closely related, but the former is probably paraphyletic. Mabuya spinalis and M. salensis are also probably paraphyletic. Within species, samples from separate islands always form monophyletic groups. Some colonization events can be hypothesized, which are in line with the age of the islands. C-mos variation is concordant with the topology derived from mtDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号