首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Drosophila inhibitor of apoptosis protein DIAP1 ensures cell viability by directly inhibiting caspases. In cells destined to die this IAP-mediated inhibition of caspases is overcome by IAP-antagonists. Genetic evidence indicates that IAP-antagonists are non-equivalent and function synergistically to promote apoptosis. Here we provide biochemical evidence for the non-equivalent mode of action of Reaper, Grim, Hid and Jafrac2. We find that these IAP-antagonists display differential and selective binding to specific DIAP1 BIR domains. Consistently, we show that each DIAP1 BIR region associates with distinct caspases. The differential DIAP1 BIR interaction seen both between initiator and effector caspases and within IAP-antagonist family members suggests that different IAP-antagonists inhibit distinct caspases from interacting with DIAP1. Surprisingly, we also find that the caspase-binding residues of XIAP predicted to be strictly conserved in caspase-binding IAPs, are absent in DIAP1. In contrast to XIAP, residues C-terminal to the DIAP1 BIR1 domain are indispensable for caspase association. Our studies on DIAP1 and caspases expose significant differences between DIAP1 and XIAP suggesting that DIAP1 and XIAP inhibit caspases in different ways.  相似文献   

2.
In addition to their well-known function in apoptosis, caspases are also important in several nonapoptotic processes. How caspase activity is restrained and shut down under such nonapoptotic conditions remains unknown. Here, we show that Drosophila melanogaster inhibitor of apoptosis protein 2 (DIAP2) controls the level of caspase activity in living cells. Animals that lack DIAP2 have higher levels of drICE activity. Although diap2-deficient cells remain viable, they are sensitized to apoptosis following treatment with sublethal doses of x-ray irradiation. We find that DIAP2 regulates the effector caspase drICE through a mechanism that resembles the one of the caspase inhibitor p35. As for p35, cleavage of DIAP2 is required for caspase inhibition. Our data suggest that DIAP2 forms a covalent adduct with the catalytic machinery of drICE. In addition, DIAP2 also requires a functional RING finger domain to block cell death and target drICE for ubiquitylation. Because DIAP2 efficiently interacts with drICE, our data suggest that DIAP2 controls drICE in its apoptotic and nonapoptotic roles.  相似文献   

3.
Inhibitor of apoptosis proteins (IAPs) act as endogenous inhibitors of active caspases. Drosophila IAP1 (DIAP1) activity is required to keep cells from undergoing apoptosis. The central cell death regulators Reaper and Hid induce apoptosis very rapidly by inhibiting DIAP1 function. We have developed a system for replacing endogenous DIAP1 with mutant forms of the protein, allowing us to examine the roles of various domains of the protein in living and dying cells. We found that DIAP1 is cleaved by a caspase early after the initiation of apoptosis. This cleavage is required for DIAP1 degradation, but Rpr and Hid can still initiate apoptosis in the absence of cleavage. The cleavage of DIAP1 promotes DIAP1 degradation in a manner dependent on the function of the ubiquitin ligase function of the DIAP1 ring domain. This ring domain function is required for Hid-induced apoptosis. We propose a model that synthesizes our data with those of other laboratories and provide a consistent model for DIAP1 function in living and dying cells.  相似文献   

4.
Although essential in mammals, in flies the importance of mitochondrial outer membrane permeabilization for apoptosis remains highly controversial. Herein, we demonstrate that Drosophila Omi (dOmi), a fly homologue of the serine protease Omi/HtrA2, is a developmentally regulated mitochondrial intermembrane space protein that undergoes processive cleavage, in situ, to generate two distinct inhibitor of apoptosis (IAP) binding motifs. Depending upon the proapoptotic stimulus, mature dOmi is then differentially released into the cytosol, where it binds selectively to the baculovirus IAP repeat 2 (BIR2) domain in Drosophila IAP1 (DIAP1) and displaces the initiator caspase DRONC. This interaction alone, however, is insufficient to promote apoptosis, as dOmi fails to displace the effector caspase DrICE from the BIR1 domain in DIAP1. Rather, dOmi alleviates DIAP1 inhibition of all caspases by proteolytically degrading DIAP1 and induces apoptosis both in cultured cells and in the developing fly eye. In summary, we demonstrate for the first time in flies that mitochondrial permeabilization not only occurs during apoptosis but also results in the release of a bona fide proapoptotic protein.  相似文献   

5.
Some members of the inhibitor of apoptosis (IAP) protein family block apoptosis by binding to and neutralizing active caspases. We recently demonstrated that a physical association between IAP and caspases alone is insufficient to regulate caspases in vivo and that an additional level of control is provided by IAP-mediated ubiquitination of both itself and the associated caspases. Here we show that Drosophila IAP 1 (DIAP1) is degraded by the 'N-end rule' pathway and that this process is indispensable for regulating apoptosis. Caspase-mediated cleavage of DIAP1 at position 20 converts the more stable pro-N-degron of DIAP1 into the highly unstable, Asn-bearing, DIAP1 N-degron of the N-end rule degradation pathway. Thus, DIAP1 represents the first known metazoan substrate of the N-end rule pathway that is targeted for degradation through its amino-terminal Asn residue. We demonstrate that the N-end rule pathway is required for regulation of apoptosis induced by Reaper and Hid expression in the Drosophila melanogaster eye. Our data suggest that DIAP1 instability, mediated through caspase activity and subsequent exposure of the N-end rule pathway, is essential for suppression of apoptosis. We suggest that DIAP1 safeguards cell viability through the coordinated mutual destruction of itself and associated active caspases.  相似文献   

6.
Members of the inhibitor of apoptosis protein (IAP) family can inhibit caspases and cell death in a variety of insect and vertebrate systems. Drosophila IAP1 (DIAP1) inhibits cell death to facilitate normal embryonic development. Here, using RNA interference, we showed that down-regulation of DIAP1 is sufficient to induce cell death in Drosophila S2 cells. Although this cell death process was accompanied by elevated caspase activity, this activation was not essential for cell death. We found that DIAP1 depletion-induced cell death was strongly suppressed by a reduction in the Drosophila caspase DRONC or the Drosophila apoptotic protease-activating factor-1 (Apaf-1) homolog, Dark. RNA interference studies in Drosophila embryos also demonstrated that the action of Dark is epistatic to that of DIAP1 in this cell death pathway. The cell death caused by down-regulation of DIAP1 was accelerated by overexpression of DRONC and Dark, and a caspase-inactive mutant form of DRONC could functionally substitute the wild-type DRONC in accelerating cell death. These results suggest the existence of a novel mechanism for cell death signaling in Drosophila that is mediated by DRONC and Dark.  相似文献   

7.
Inhibitor of apoptosis (IAP) proteins suppress apoptosis and inhibit caspases. Several IAPs also function as ubiquitin-protein ligases. Regulators of IAP auto-ubiquitination, and thus IAP levels, have yet to be identified. Here we show that Head involution defective (Hid), Reaper (Rpr) and Grim downregulate Drosophila melanogaster IAP1 (DIAP) protein levels. Hid stimulates DIAP1 polyubiquitination and degradation. In contrast to Hid, Rpr and Grim can downregulate DIAP1 through mechanisms that do not require DIAP1 function as a ubiquitin-protein ligase. Observations with Grim suggest that one mechanism by which these proteins produce a relative decrease in DIAP1 levels is to promote a general suppression of protein translation. These observations define two mechanisms through which DIAP1 ubiquitination controls cell death: first, increased ubiquitination promotes degradation directly; second, a decrease in global protein synthesis results in a differential loss of short-lived proteins such as DIAP1. Because loss of DIAP1 is sufficient to promote caspase activation, these mechanisms should promote apoptosis.  相似文献   

8.
The caspase family of cysteine proteases plays important roles in bringing about apoptotic cell death. All caspases studied to date cleave substrates COOH-terminal to an aspartate. Here we show that the Drosophila caspase DRONC cleaves COOH-terminal to glutamate as well as aspartate. DRONC autoprocesses itself following a glutamate residue, but processes a second caspase, drICE, following an aspartate. DRONC prefers tetrapeptide substrates in which aliphatic amino acids are present at the P2 position, and the P1 residue can be either aspartate or glutamate. Expression of a dominant negative form of DRONC blocks cell death induced by the Drosophila cell death activators reaper, hid, and grim, and DRONC overexpression in flies promotes cell death. Furthermore, the Drosophila cell death inhibitor DIAP1 inhibits DRONC activity in yeast, and DIAP1's ability to inhibit DRONC-dependent yeast cell death is suppressed by HID and GRIM. These observations suggest that DRONC acts to promote cell death. However, DRONC activity is not suppressed by the caspase inhibitor and cell death suppressor baculovirus p35. We discuss possible models for DRONC function as a cell death inhibitor.  相似文献   

9.
We have isolated the recently identified Drosophila caspase DRONC through its interaction with the effector caspase drICE. Ectopic expression of DRONC induces cell death in Schizosaccharomyces pombe, mammalian fibroblasts and the developing Drosophila eye. The caspase inhibitor p35 fails to rescue DRONC-induced cell death in vivo and is not cleaved by DRONC in vitro, making DRONC the first identified p35-resistant caspase. The DRONC pro-domain interacts with Drosphila inhibitor of apoptosis protein 1 (DIAP1), and co-expression of DIAP1 in the developing Drosophila eye completely reverts the eye ablation phenotype induced by pro-DRONC expression. In contrast, DIAP1 fails to rescue eye ablation induced by DRONC lacking the pro-domain, indicating that interaction of DIAP1 with the pro-domain of DRONC is required for suppression of DRONC-mediated cell death. Heterozygosity at the diap1 locus enhances the pro-DRONC eye phenotype, consistent with a role for endogenous DIAP1 in suppression of DRONC activation. Both heterozygosity at the dronc locus and expression of dominant-negative DRONC mutants suppress the eye phenotype caused by reaper (RPR) and head involution defective (HID), consistent with the idea that DRONC functions in the RPR and HID pathway.  相似文献   

10.
Many inhibitor of apoptosis (IAP) family proteins inhibit apoptosis. IAPs contain N-terminal baculovirus IAP repeat domains and a C-terminal RING ubiquitin ligase domain. Drosophila IAP DIAP1 is essential for the survival of many cells, protecting them from apoptosis by inhibiting active caspases. Apoptosis initiates when proteins such as Reaper, Hid, and Grim bind a surface groove in DIAP1 baculovirus IAP repeat domains via an N-terminal IAP-binding motif. This evolutionarily conserved interaction disrupts DIAP1-caspase interactions, unleashing apoptosis-inducing caspase activity. A second Drosophila IAP, DIAP2, also binds Rpr and Hid and inhibits apoptosis in multiple contexts when overexpressed. However, due to a lack of mutants, little is known about the normal functions of DIAP2. We report the generation of diap2 null mutants. These flies are viable and show no defects in developmental or stress-induced apoptosis. Instead, DIAP2 is required for the innate immune response to Gram-negative bacterial infection. DIAP2 promotes cytoplasmic cleavage and nuclear translocation of the NF-kappaB homolog Relish, and this requires the DIAP2 RING domain. Increasing the genetic dose of diap2 results in an increased immune response, whereas expression of Rpr or Hid results in down-regulation of DIAP2 protein levels. Together these observations suggest that DIAP2 can regulate immune signaling in a dose-dependent manner, and this can be regulated by IBM-containing proteins. Therefore, diap2 may identify a point of convergence between apoptosis and immune signaling pathways.  相似文献   

11.
The Drosophila melanogaster inhibitor of apoptosis protein DIAP1 suppresses apoptosis in part through inhibition of the effector caspase DrICE. The pro-death proteins Reaper, Hid and Grim (RHG) induce apoptosis by antagonizing DIAP1 function. However, the underlying molecular mechanisms remain unknown. Here we demonstrate that DIAP1 directly inhibits the catalytic activity of DrICE through its BIR1 domain and this inhibition is countered effectively by the RHG proteins. Inhibition of DrICE by DIAP1 occurs only after the cleavage of its N-terminal 20 amino acids and involves a conserved surface groove on BIR1. Crystal structures of BIR1 bound to the RHG peptides show that the RHG proteins use their N-terminal IAP-binding motifs to bind to the same surface groove, hence relieving DIAP1-mediated inhibition of DrICE. These studies define novel molecular mechanisms for the inhibition and activation of a representative D. melanogaster effector caspase.  相似文献   

12.
Members of the Inhibitor of Apoptosis Protein (IAP) family are essential for cell survival in Drosophila and appear to neutralize the cell death machinery by binding to and ubiquitylating pro-apoptotic caspases. Cell death is triggered when "Reaper-like" proteins bind to IAPs and liberate caspases from IAPs. We have identified the thioredoxin peroxidase Jafrac2 as an IAP-interacting protein in Drosophila cells that harbours a conserved N-terminal IAP-binding motif. In healthy cells, Jafrac2 resides in the endoplasmic reticulum but is rapidly released into the cytosol following induction of apoptosis. Mature Jafrac2 interacts genetically and biochemically with DIAP1 and promotes cell death in tissue culture cells and the Drosophila developing eye. In common with Rpr, Jafrac2-mediated cell death is contingent on DIAP1 binding because mutations that abolish the Jafrac2-DIAP1 interaction suppress the eye phenotype caused by Jafrac2 expression. We show that Jafrac2 displaces Dronc from DIAP1 by competing with Dronc for the binding of DIAP1, consistent with the idea that Jafrac2 triggers cell death by liberating Dronc from DIAP1-mediated inhibition.  相似文献   

13.
In Drosophila melanogaster, apoptosis is controlled by the integrated actions of the Grim-Reaper (Grim-Rpr) and Drosophila Inhibitor of Apoptosis (DIAP) proteins (reviewed in refs 1 4). The anti-apoptotic DIAPs bind to caspases and inhibit their proteolytic activities. DIAPs also bind to Grim-Rpr proteins, an interaction that promotes caspase activity and the initiation of apoptosis. Using a genetic modifier screen, we identified four enhancers of grim-reaper-induced apoptosis that all regulate ubiquitination processes: uba-1, skpA, fat facets (faf), and morgue. Strikingly, morgue encodes a unique protein that contains both an F box and a ubiquitin E2 conjugase domain that lacks the active site Cys required for ubiquitin linkage. A reduction of morgue activity suppressed grim-reaper-induced cell death in Drosophila. In cultured cells, Morgue induced apoptosis that was suppressed by DIAP1. Targeted morgue expression downregulated DIAP1 levels in Drosophila tissue, and Morgue and Rpr together downregulated DIAP1 levels in cultured cells. Consistent with potential substrate binding functions in an SCF ubiquitin E3 ligase complex, Morgue exhibited F box-dependent association with SkpA and F box-independent association with DIAP1. Morgue may thus have a key function in apoptosis by targeting DIAP1 for ubiquitination and turnover.  相似文献   

14.
In Drosophila, the APAF-1 homolog ARK is required for the activation of the initiator caspase DRONC, which in turn cleaves the effector caspases DRICE and DCP-1. While the function of ARK is important in stress-induced apoptosis in Drosophila S2 cells, as its removal completely suppresses cell death, the decision to undergo apoptosis appears to be regulated at the level of caspase activation, which is controlled by the IAP proteins, particularly DIAP1. Here, we further dissect the apoptotic pathways induced in Drosophila S2 cells in response to stressors and in response to knock-down of DIAP1. We found that the induction of apoptosis was dependent in each case on expression of ARK and DRONC and surviving cells continued to proliferate. We noted a difference in the effects of silencing the executioner caspases DCP-1 and DRICE; knock-down of either or both of these had dramatic effects to sustain cell survival following depletion of DIAP1, but had only minor effects following cellular stress. Our results suggest that the executioner caspases are essential for death following DIAP1 knock-down, indicating that the initiator caspase DRONC may lack executioner functions. The apparent absence of mitochondrial outer membrane permeabilization (MOMP) in Drosophila apoptosis may permit the cell to thrive when caspase activation is disrupted.  相似文献   

15.
Despite the identification of numerous key players of the cell death machinery, little is known about their physiological role. Using RNA interference (RNAi) in vivo, we have studied the requirement of all Drosophila caspases and caspase-adaptors in different paradigms of apoptosis. Of the seven caspases, Dronc, drICE, Strica and Decay are rate limiting for apoptosis. Surprisingly, Hid-mediated apoptosis requires a broader range of caspases than apoptosis initiated by loss of the caspase inhibitor DIAP1, suggesting that Hid causes apoptosis not only by antagonizing DIAP1 but also by activating DIAP1-independent caspase cascades. While Hid killing requires Strica, Decay, Dronc/Dark and drICE, apoptosis triggered by DIAP1 depletion merely relied upon Dronc/Dark and drICE. Furthermore, we found that overexpression of DIAP2 can rescue diap1-RNAi-mediated apoptosis, suggesting that DIAP2 regulates caspases directly. Consistently, we show that DIAP2 binds active drICE. Since DIAP2 associates with Hid, we propose a model whereby Hid co-ordinately targets both DIAP1 and DIAP2 to unleash drICE.  相似文献   

16.
Inhibitor of apoptosis proteins (IAPs) provide a critical barrier to inappropriate apoptotic cell death through direct binding and inhibition of caspases. We demonstrate that degradation of IAPs is an important mechanism for the initiation of apoptosis in vivo. Drosophila Morgue, a ubiquitin conjugase-related protein, promotes DIAP1 down-regulation in the developing retina to permit selective programmed cell death. Morgue complexes with DIAP1 in vitro and mediates DIAP1 degradation in a manner dependent on the Morgue UBC domain. Reaper (Rpr) and Grim, but not Hid, also promote the degradation of DIAP1 in vivo, suggesting that these proteins promote cell death through different mechanisms.  相似文献   

17.
Baculoviruses induce widespread apoptosis in invertebrates. To better understand the pathways by which these DNA viruses trigger apoptosis, we have used a combination of RNA silencing and overexpression of viral and host apoptotic regulators to identify cell death components in the model system of Drosophila melanogaster. Here we report that the principal effector caspase DrICE is required for baculovirus-induced apoptosis of Drosophila DL-1 cells as demonstrated by RNA silencing. proDrICE was proteolytically cleaved and activated during infection. Activation was blocked by overexpression of the cellular inhibitor-of-apoptosis proteins DIAP1 and SfIAP but not by the baculovirus caspase inhibitor P49 or P35. Rather, the substrate inhibitors P49 and P35 prevented virus-induced apoptosis by arresting active DrICE through formation of stable inhibitory complexes. Consistent with a two-step activation mechanism, proDrICE was cleaved at the large/small subunit junction TETD(230)-G by a DIAP1-inhibitable, P49/P35-resistant protease and then at the prodomain junction DHTD(28)-A by a P49/P35-sensitive protease. Confirming that P49 targeted DrICE and not the initiator caspase DRONC, depletion of DrICE by RNA silencing suppressed virus-induced cleavage of P49. Collectively, our findings indicate that whereas DIAP1 functions upstream to block DrICE activation, P49 and P35 act downstream by inhibiting active DrICE. Given that P49 has the potential to inhibit both upstream initiator caspases and downstream effector caspases, we conclude that P49 is a broad-spectrum caspase inhibitor that likely provides a selective advantage to baculoviruses in different cellular backgrounds.  相似文献   

18.
The molecular mechanisms by which RNA viruses induce apoptosis and apoptosis-associated pathology are not fully understood. Here we show that flock house virus (FHV), one of the simplest RNA viruses (family, Nodaviridae), induces robust apoptosis of permissive Drosophila Line-1 (DL-1) cells. To define the pathway by which FHV triggers apoptosis in this model invertebrate system, we investigated the potential role of Drosophila apoptotic effectors during infection. Suggesting the involvement of host caspases, the pancaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluromethylketone (z-VAD-fmk) prevented FHV-induced cytopathology and prolonged cell survival. RNA interference-mediated ablation of the principal Drosophila effector caspase DrICE or its upstream initiator caspase DRONC prevented FHV-induced apoptosis and demonstrated direct participation of this intrinsic caspase pathway. Prior to the FHV-induced activation of DrICE, the intracellular level of inhibitor-of-apoptosis (IAP) protein DIAP1, the principal caspase regulator in Drosophila melanogaster, was dramatically reduced. DIAP1 was depleted despite z-VAD-fmk-mediated caspase inhibition during infection, suggesting that the loss of DIAP1 was caused by an upstream FHV-induced signal. The RNA interference-mediated knockdown of DIAP1 caused rapid and uniform apoptosis of DL-1 cells and thus indicated that DIAP1 depletion is sufficient to trigger apoptosis. Confirming this conclusion, the elevation of intracellular DIAP1 levels in stable diap1-transfected cells blocked caspase activation and prevented FHV-induced apoptosis. Collectively, our findings suggest that DIAP1 is a critical sensor of virus infection, which upon virus-signaled depletion relieves caspase inhibition, which subsequently executes apoptotic death. Thus, our study supports the hypothesis that altering the level or the activity of cellular IAP proteins is a general mechanism by which RNA viruses trigger apoptosis.  相似文献   

19.
Caspase activation has been extensively studied in the context of apoptosis. However, caspases also control other cellular functions, although the mechanisms regulating caspases in nonapoptotic contexts remain obscure. Drosophila IAP1 (DIAP1) is an endogenous caspase inhibitor that is crucial for regulating cell death during development. Here we describe Drosophila IKK-related kinase (DmIKKvarepsilon) as a regulator of caspase activation in a nonapoptotic context. We show that DmIKKvarepsilon promotes degradation of DIAP1 through direct phosphorylation. Knockdown of DmIKKvarepsilon in the proneural clusters of the wing imaginal disc, in which nonapoptotic caspase activity is required for proper sensory organ precursor (SOP) development, stabilizes endogenous DIAP1 and affects Drosophila SOP development. Our results demonstrate that DmIKKvarepsilon is a determinant of DIAP1 protein levels and that it establishes the threshold of activity required for the execution of nonapoptotic caspase functions.  相似文献   

20.
In Drosophila S2 cells, the apical caspase DRONC undergoes a low level of spontaneous autoprocessing. Unintended apoptosis is prevented by the inhibitor of apoptosis DIAP1, which targets the processed form of DRONC for degradation through its E3 ubiquitin protein ligase activity. Recent reports have demonstrated that shortly after the initiation of apoptosis in S2 cells, DIAP1 is cleaved following aspartate residue Asp-20 by the effector caspase DrICE. Here we report a novel caspase-mediated cleavage of DIAP1 in S2 cells. In both living and dying S2 cells, DIAP1 is cleaved by DRONC after glutamate residue Glu-205, located between the first and second BIR domains. The mutation of Glu-205 prevented the interaction of DIAP1 and processed DRONC but had no effect on the interaction with full-length DRONC. The mutation of Glu-205 also had a negative effect on the ability of overexpressed DIAP1 to prevent apoptosis stimulated by the proapoptotic protein Reaper or by UV light. These results expand our knowledge of the events that occur in the Drosophila apoptosome prior to and after receiving an apoptotic signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号