首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Using limited proteolysis, we show that the hyperthermophilic topoisomerase I from Thermotoga maritima exhibits a unique hot spot susceptible to proteolytic attack with a variety of proteases. The remaining of the protein is resistant to further proteolysis, which suggests a compact folding of the thermophilic topoisomerase, when compared to its mesophilic Escherichia coli homologue. We further show that a truncated version of the T. maritima enzyme, lacking the last C-terminal 93 amino acids is more susceptible to proteolysis, which suggests that the C-terminal region of the topoisomerase may be important to maintain the compact folding of the enzyme. The hot spot of cleavage is located around amino acids 326-330 and probably corresponds to an exposed loop of the protein, near the active site tyrosine in charge of DNA cleavage and religation. Location of this protease sensitive region in the vicinity of bound DNA is consistent with the partial protection observed in the presence of different DNA substrates. Unexpectedly, although proteolysis splits the enzyme in two halves, each containing part of the motifs involved in catalysis, trypsin-digested topoisomerase I retains full DNA binding, cleavage, and relaxation activities, full thermostability and also the same hydrodynamic and spectral properties as undigested samples. This supports the idea that the two fragments which are generated by proteolysis remain correctly folded and tightly associated after proteolytic cleavage.  相似文献   

2.
Bacterial topoisomerases I are generally composed of two domains as follows: a core domain, which contains all the conserved motifs involved in the trans-esterification reactions, and a carboxyl-terminal domain, highly variable in size and sequence. In the present work, we have addressed the question of the respective roles of the two domains in the different steps of the topoisomerization cycle. For this purpose, we prepared various recombinant topoisomerases from two model enzymes: topoisomerase I from the hyperthermophilic bacterium Thermotoga maritima and topoisomerase I from Escherichia coli. We compared the properties of the two core domains to that of the topoisomerases formed by combining the core domain of one enzyme to the carboxyl-terminal domain of the other. We found that, contrary to E. coli (Lima, C. D., Wang, J. C., and Mondragon, A. (1993) J. Mol. Biol. 232, 1213-1216), the core domain from T. maritima (TmTop65) is able to sustain by itself a complete topoisomerization cycle, although with low efficiency. Fusion of TmTop65 to the entire carboxyl-terminal domain from E. coli considerably increases binding efficiency, thermal stability, and DNA relaxation activity. Moreover, the chimera predominantly acquires the cleavage specificity of E. coli full-length topoisomerase. For the chimera obtained by fusion of the T. maritima carboxyl-terminal domain to the core EcTop67, very low DNA relaxation activity and binding are recovered, but formation of a covalent DNA adduct is impaired. Taken together, our results show that the presence and the nature of the carboxyl-terminal domain of bacterial topoisomerases I strongly determine their DNA binding efficiency and cleavage specificity but is not strictly required for strand passage.  相似文献   

3.
Reverse gyrase is a unique type IA topoisomerase that is able to introduce positive supercoils into DNA in an ATP-dependent process. ATP is bound to the helicase-like domain of the enzyme that contains most of the conserved motifs found in helicases of the SF1 and SF2 superfamilies. In this paper, we have investigated the role of the conserved helicase motifs I, II, V, VI, and Q by generating mutants of the Thermotoga maritima reverse gyrase. We show that mutations in motifs I, II, V, and VI completely eliminate the supercoiling activity of reverse gyrase and that a mutation in the Q motif significantly reduces this activity. Further analysis revealed that for most mutants, the DNA binding and cleavage properties are not significantly changed compared with the wild type enzyme, whereas their ATPase activity is impaired. These results clearly show that the helicase motifs are tightly involved in the coupling of ATP hydrolysis to the topoisomerase activity. The zinc finger motif located at the N-terminal end of reverse gyrases was also mutated. Our results indicate that this motif plays an important role in DNA binding.  相似文献   

4.
Control of DNA topology is critical in thermophilic organisms in which heightened ambient temperatures threaten the stability of the double helix. An important role in this control is played by topoisomerase I, a member of the type IA family of topoisomerases. We investigated the binding and activity of this topoisomerase from the hyperthermophilic bacterium Thermotoga maritima on duplex DNA using single molecule techniques, presenting it with various substrates such as (+) plectonemes, (-) plectonemes, and denaturation bubbles. We found the topoisomerase inactive on both types of plectonemes, but active on denaturation bubbles produced at increased stretching forces in underwound DNA. The relaxation rate depended sensitively on the applied force and the protein concentration. These observations could be understood in terms of a preference of the topoisomerase for single-stranded DNA over double-stranded DNA and allowed for a better understanding of activity of the topoisomerase in bulk experiments on circular plasmids. Binding experiments on a single duplex molecule using a mutant unable to perform cleavage confirmed this interpretation and suggested that T.maritima topoisomerase I behaves like an SSB by lowering the denaturation threshold of underwound DNA. Finally, experiments with a unique single-stranded DNA showed that both ends of the cleaved DNA are tightly maintained by the enzyme, supporting an enzyme-bridged mechanism for this topoisomerase.  相似文献   

5.
In mesophilic prokaryotes, the DNA-binding protein HU participates in nucleoid organization as well as in regulation of DNA-dependent processes. Little is known about nucleoid organization in thermophilic eubacteria. We show here that HU from the hyperthermophilic eubacterium Thermotoga maritima HU bends DNA and constrains negative DNA supercoils in the presence of topoisomerase I. However, while binding to a single site occludes approximately 35 bp, association of T. maritima HU with DNA of sufficient length to accommodate multiple protomers results in an apparent shorter occluded site size. Such complexes consist of ordered arrays of protomers, as revealed by the periodicity of DNase I cleavage. Association of TmHU with plasmid DNA yields a complex that is remarkably resistant to DNase I-mediated degradation. TmHU is the only member of this protein family capable of occluding a 35 bp nonspecific site in duplex DNA; we propose that this property allows TmHU to form exceedingly stable associations in which DNA flanking the kinks is sandwiched between adjacent proteins. We suggest that T. maritima HU serves an architectural function when associating with a single 35 bp site, but generates a very stable and compact aggregate at higher protein concentrations that organizes and protects the genomic DNA.  相似文献   

6.
An endonuclease IV homolog was identified as the product of a conceptual open reading frame in the genome of the hyperthermophilic bacterium Thermotoga maritima. The T. maritima endonuclease IV gene encodes a 287-amino-acid protein with 32% sequence identity to Escherichia coli endonuclease IV. The gene was cloned, and the expressed protein was purified and shown to have enzymatic activities that are characteristic of the endonuclease IV family of DNA repair enzymes, including apurinic/apyrimidinic endonuclease activity and repair activities on 3'-phosphates, 3'-phosphoglycolates, and 3'-trans-4-hydroxy-2-pentenal-5-phosphates. The T. maritima enzyme exhibits enzyme activity at both low and high temperatures. Circular dichroism spectroscopy indicates that T. maritima endonuclease IV has secondary structure similar to that of E. coli endonuclease IV and that the T. maritima endonuclease IV structure is more stable than E. coli endonuclease IV by almost 20 degrees C, beginning to rapidly denature only at temperatures approaching 90 degrees C. The presence of this enzyme, which is part of the DNA base excision repair pathway, suggests that thermophiles use a mechanism similar to that used by mesophiles to deal with the large number of abasic sites that arise in their chromosomes due to the increased rates of DNA damage at elevated temperatures.  相似文献   

7.
DNA topoisomerase VI from the hyperthermophilic archaeon Sulfolobus shibatae is the prototype of a novel family of type II DNA topoisomerases that share little sequence similarity with other type II enzymes, including bacterial and eukaryal type II DNA topoisomerases and archaeal DNA gyrases. DNA topoisomerase VI relaxes both negatively and positively supercoiled DNA in the presence of ATP and has no DNA supercoiling activity. The native enzyme is a heterotetramer composed of two subunits, A and B, with apparent molecular masses of 47 and 60 kDa, respectively. Here wereport the overexpression in Escherichia coli and the purification of each subunit. The A subunit exhibits clusters of arginines encoded by rare codons in E.coli . The expression of this protein thus requires the co-expression of the minor E.coli arginyl tRNA which reads AGG and AGA codons. The A subunit expressed in E.coli was obtained from inclusion bodies after denaturation and renaturation. The B subunit was overexpressed in E.coli and purified in soluble form. When purified B subunit was added to the renatured A subunit, ATP-dependent relaxation and decatenation activities of the hyperthermophilic DNA topoisomerase were reconstituted. The reconstituted recombinant enzyme exhibits a specific activity similar to the enzyme purified from S.shibatae . It catalyzes transient double-strand cleavage of DNA and becomes covalently attached to the ends of the cleaved DNA. This cleavage is detected only in the presence of both subunits and in the presence of ATP or its non-hydrolyzable analog AMPPNP.  相似文献   

8.
Mycobacterium smegmatis topoisomerase I has several distinctive features. The absence of the zinc finger motif found in other prokaryotic type I topoisomerases and the ability of the enzyme to recognise single-stranded and duplex DNA are unique characteristics of the enzyme. We have mapped the strong topoisomerase sites of the enzyme on genomic DNA sequences from Mycobacterium tuberculosis and M.smegmatis. The enzyme does not nick DNA in random fashion and DNA cleavage occurred at a few specific sites. Mapping of these sites revealed conservation of a pentanucleotide motif CG/TCT↓T at the cleavage site (↓ represents the cleavage site). The enzyme binds and cleaves consensus oligonucleotides having this sequence motif. The protein exhibits a very high preference for C or a G residue at the +2 position with respect to the cleavage site. Based on earlier and the present studies we propose that the enzyme functions in vivo mainly at these specific sites to carry out topological reactions.  相似文献   

9.
As a step towards studying representative members of the two-component family of signal transduction proteins, we have cloned genes encoding a histidine protein kinase and a response regulator from the hyperthermophilic bacterium Thermotoga maritima. The genes have been designated HpkA and drrA, respectively. The deduced HpkA sequence contains all five characteristic histidine protein kinase motifs with the same relative order and spacing found in the mesophilic bacterial proteins. A hydropathy profile indicates that HpkA possesses only one membrane-spanning segment located at the extreme N terminus. The N-terminal region of DrrA exhibits all of the characteristics of the conserved domains of mesophilic bacterial response regulators, and the C-terminal region shows high similarity to the OmpR-PhoB subfamily of DNA-binding proteins. Recombinant T. maritima proteins, truncated HpkA lacking the putative membrane-spanning N- terminal amino acids and DrrA, were expressed in Escherichia coli. Partial purification of T. maritima proteins was achieved by heat denaturation of E. coli host proteins. In an in vitro assay, truncated HpkA protein was autophosphorylated in the presence of ATP. Thus, the N-terminal hydrophobic region is not required for kinase activity. Phosphotransfer between truncated HpkA and DrrA was demonstrated in vitro with the partially purified proteins. The phosphorylation reactions were strongly temperature dependent. The results indicate that the recombinant T. maritima two-component proteins overexpressed in E. coli are stable as well as enzymatically active at elevated temperatures.  相似文献   

10.
Escherichia coli DNA topoisomerase I catalyzes relaxation of negatively supercoiled DNA. The reaction proceeds through a covalent intermediate, the cleavable complex, in which the DNA is cleaved and the enzyme is linked to the DNA via a phosphotyrosine linkage. Each molecule of E. coli DNA topoisomerase I has been shown to have three tightly bound zinc(II) ions required for relaxation activity (Tse-Dinh, Y.-C., and Beran-Steed, R.K. (1988) J. Biol. Chem. 263, 15857-15859). It is shown here that Cd(II) could replace Zn(II) in reconstitution of active enzyme from apoprotein. The role of metal was analyzed by studying the partial reactions. The apoenzyme was deficient in sodium dodecyl sulfate-induced cleavage of supercoiled PM2 phage DNA. Formation of covalent complex with linear single-stranded DNA was also reduced in the absence of metal. However, the cleavage of small oligonucleotide was not affected, and the apoenzyme could religate the covalently bound oligonucleotide to another DNA molecule. Assay of noncovalent complex formation by retention of 5'-labeled DNA on filters showed that the apoenzyme was not inhibited in noncovalent binding to DNA. It is proposed that zinc(II) coordination in E. coli DNA topoisomerase I is required for the transition of the noncovalent complex with DNA to the cleavable state.  相似文献   

11.
【背景】大肠杆菌拓扑异构酶Ⅰ(Escherichia coli topoisomerase I,E.coli TopA)在DNA复制、转录、重组和基因表达调控等过程发挥关键作用。研究表明E.coli TopA只有结合锌离子才具有活性,然而E.coli TopA能否结合其他金属离子尤其是重金属离子,以及结合其他金属后是否具有活性,目前仍不清楚。【目的】探究大肠杆菌拓扑异构酶Ⅰ是否结合环境中常见重金属离子,研究重金属离子结合E.coli TopA蛋白后对其活性的影响。【方法】在分别添加有锌、钴、镍、镉、铁、汞、砷、铬、铅、铜离子的M9基础培养中表达、纯化出E.coli TopA蛋白,并对纯化得到的蛋白用电感耦合等离子体质谱仪进行相应金属离子含量的测定;利用表达E.coli TopA锌指结构的突变体蛋白鉴定重金属离子的结合位点;通过体外超螺旋DNA松弛实验测定不同金属结合E.coli TopA的拓扑异构酶活性;通过测定蛋白内源性荧光推测不同金属结合E.coli TopA的空间构象差异。【结果】E.coli TopA在体内除了能结合锌和铁之外,还能够结合钴、镍、镉3种离子,但是不能结合汞、砷、铬、铅、铜离子。钴、镍、镉结合形式的E.coli TopA,每个蛋白分子最多可以结合3个相应的金属离子,他们与TopA蛋白的结合位点也是位于3个锌指结构域,而且每个锌指结构域结合1个金属离子。此外,E.coli TopA结合钴、镍、镉离子后,其DNA拓扑异构酶活性并未受到影响,可能是由于钴、镍、镉离子结合形式的E.coli TopA蛋白,其空间构象与锌结合形式相比并未发生显著变化。【结论】由于DNA拓扑异构酶在维持细胞正常生理功能中发挥关键作用,研究表明E.coli TopA的功能不会受到常见重金属的干扰(不结合或者结合后活性无影响),这也有可能是大肠杆菌在进化过程中产生的对抗环境中重金属离子毒害作用的一种自我保护和耐受机制,具有重要的生理意义。  相似文献   

12.
13.
A gene coding for the ferredoxin of the primordial, strictly anaerobic and hyperthermophilic bacterium Thermotoga maritima was cloned, sequenced and expressed in Escherichia coli. The ferredoxin gene encodes a polypeptide of 60 amino acids that incorporates a single 4Fe-4S cluster. T. maritima ferredoxin expressed in E. coli is a heat-stable, monomeric protein, the spectroscopic properties of which show that its 4Fe-4S cluster is correctly assembled within the mesophilic host, and that it remains stable during purification under aerobic conditions. Removal of the iron-sulfur cluster results in an apo-ferredoxin that has no detectable secondary structure. This observation indicates that in vivo formation of the ferredoxin structure is coupled to the insertion of the iron-sulfur cluster into the polypeptide chain. Sequence comparison of T. maritima ferredoxin with other 4Fe-4S ferredoxins revealed high sequence identities (75% and 50% respectively) to the ferredoxins from the hyperthermophilic members of the Archaea, Thermococcus litoralis and Pyrococcus furiosus. The high sequence similarity supports a close relationship between these extreme thermophilic organisms from different phylogenetic domains and suggests that ferredoxins with a single 4Fe-4S cluster are the primordial representatives of the whole protein family. This observation suggests a new model for the evolution of ferredoxins.  相似文献   

14.
15.
DNA topoisomerase I from Mycobacterium smegmatis unlike many other type I topoisomerases is a site specific DNA binding protein. We have investigated the sequence specific DNA binding characteristics of the enzyme using specific oligonucleotides of varied length. DNA binding, oligonucleotide competition and covalent complex assays show that the substrate length requirement for interaction is much longer ( approximately 20 nucleotides) in contrast to short length substrates (eight nucleotides) reported for Escherichia coli topoisomerase I and III. P1 nuclease and KMnO(4) footprinting experiments indicate a large protected region spanning about 20 nucleotides upstream and 2-3 nucleotides downstream of the cleavage site. Binding characteristics indicate that the enzyme interacts efficiently with both single-stranded and double-stranded substrates containing strong topoisomerase I sites (STS), a unique property not shared by any other type I topoisomerase. The oligonucleotides containing STS effectively inhibit the M. smegmatis topoisomerase I DNA relaxation activity.  相似文献   

16.
Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms   总被引:2,自引:0,他引:2  
Reverse gyrase is the only DNA topoisomerase capable of introducing positive supercoiling into DNA molecules. This unique activity reflects a distinctive arrangement of the protein, which is composed of a topoisomerase IA module fused to a domain containing sequence motives typical of helicases; however, reverse gyrase works neither like a canonical topoisomerase IA nor like a helicase. Extensive genomic analysis has shown that reverse gyrase is present in all organisms living above 70 degrees C and in some of those living at 60- 70 degrees C, but is invariably absent in organisms living at mesophilic temperatures. For its peculiar distribution and biochemical activity, the enzyme has been suggested to play a role in maintenance of genome stability at high temperature. We review here recent phylogenetic, biochemical and structural data on reverse gyrase and discuss the possible role of this enzyme in the biology of hyperthermophilic organisms.  相似文献   

17.
The hyperthermophilic bacterium Thermotoga maritima encodes a gene sharing sequence similarities with several known genes for alkaline phosphatase (AP). The putative gene was isolated and the corresponding protein expressed in Escherichia coli, with and without a predicted signal sequence. The recombinant protein showed phosphatase activity toward the substrate p-nitrophenyl-phosphate with a k(cat) of 16 s(-1) and a K(m) of 175 microM at a pH optimum of 8.0 when assayed at 25 degrees C. T. maritima phosphatase activity increased at high temperatures, reaching a maximum k(cat) of 100 s(-1), with a K(m) of 93 microM at 65 degrees C. Activity was stable at 65 degrees C for >24 h and at 90 degrees C for 5 h. Phosphatase activity was dependent on divalent metal ions, specifically Co(II) and Mg(II). Circular dichroism spectra showed that the enzyme gains secondary structure on addition of these metals. Zinc, the most common divalent metal ion required for activity in known APs, was shown to inhibit the T. maritima phosphatase enzyme at concentrations above 0.3 moles Zn: 1 mole monomer. All activity was abolished in the presence of 0.1 mM EDTA. The T. maritima AP primary sequence is 28% identical when compared with E. coli AP. Based on a structural model, the active sites are superimposable except for two residues near the E. coli AP Mg binding site, D153 and K328 (E. coli numbering) corresponding to histidine and tryptophan in T. maritima AP, respectively. Sucrose-density gradient sedimentation experiments showed that the protein exists in several quaternary forms predominated by an octamer.  相似文献   

18.
Mycobacterium smegmatis topoisomerase I differs from the typical type IA topoisomerase in many properties. The enzyme recognizes both single and double-stranded DNA with high affinity and makes sequence-specific contacts during DNA relaxation reaction. The enzyme has a conserved N-terminal domain and a highly varied C-terminal domain, which lacks the characteristic zinc binding motifs found in most of the type I eubacterial enzymes. The roles of the individual domains of the enzyme in the topoisomerase I catalyzed reactions were examined by comparing the properties of full-length topoisomerase I with those of truncated polypeptides lacking the conserved N-terminal or the divergent C-terminal region. The N-terminal larger fragment retained the site-specific binding, DNA cleavage and religation properties, hallmark characteristics of the full-length M.smegmatis topoisomerase I. In contrast, the non-conserved C-terminal fragment lacking the typical DNA binding motif, exhibited non-specific DNA binding behaviour. The two polypeptide fragments, on their own do not catalyze DNA relaxation reaction. The relaxation activity is restored when both the fragments are mixed in vitro reconstituting the enzyme function. These results along with the DNA interaction pattern of the proteins implicate an essential role for the C-terminal region in single-strand DNA passage between the two transesterification reactions catalyzed by the N-terminal domain.  相似文献   

19.
Dai P  Wang Y  Ye R  Chen L  Huang L 《Journal of bacteriology》2003,185(18):5500-5507
We report the production, purification, and characterization of a type IA DNA topoisomerase, previously designated topoisomerase I, from the hyperthermophilic archaeon Sulfolobus solfataricus. The protein was capable of relaxing negatively supercoiled DNA at 75 degrees C in the presence of Mg2+. Mutation of the putative active site Tyr318 to Phe318 led to the inactivation of the protein. The S. solfataricus enzyme cleaved oligonucleotides in a sequence-specific fashion. The cleavage occurred only in the presence of a divalent cation, preferably Mg2+. The cofactor requirement of the enzyme was partially satisfied by Cu2+, Co2+, Mn2+, Ca2+, or Ni2+. It appears that the enzyme is active with a broader spectrum of metal cofactors in DNA cleavage than in DNA relaxation (Mg2+ and Ca2+). The enzyme-catalyzed oligonucleotide cleavage required at least 7 bases upstream and 2 bases downstream of the cleavage site. Analysis of cleavage by the S. solfataricus enzyme on a set of oligonucleotides revealed a consensus cleavage sequence of the enzyme: 5'-G(A/T)CA(T)AG(T)G(A)X / XX-3'. This sequence bears more resemblance to the preferred cleavage sites of topoisomerases III than to those of topoisomerases I. Based on these data and sequence analysis, we designate the enzyme S. solfataricus topoisomerase III.  相似文献   

20.
Genes encoding 2-deoxy-d-ribose-5-phosphate aldolase (DERA) homologues from two hyperthermophiles, the archaeon Pyrobaculum aerophilum and the bacterium Thermotoga maritima, were expressed individually in Escherichia coli, after which the structures and activities of the enzymes produced were characterized and compared with those of E. coli DERA. To our surprise, the two hyperthermophilic DERAs showed much greater catalysis of sequential aldol condensation using three acetaldehydes as substrates than the E. coli enzyme, even at a low temperature (25 degrees C), although both enzymes showed much less 2-deoxy-d-ribose-5-phosphate synthetic activity. Both the enzymes were highly resistant to high concentrations of acetaldehyde and retained about 50% of their initial activities after a 20-h exposure to 300 mM acetaldehyde at 25 degrees C, whereas the E. coli DERA was almost completely inactivated after a 2-h exposure under the same conditions. The structure of the P. aerophilum DERA was determined by X-ray crystallography to a resolution of 2.0 A. The main chain coordinate of the P. aerophilum enzyme monomer was quite similar to those of the T. maritima and E. coli enzymes, whose crystal structures have already been solved. However, the quaternary structure of the hyperthermophilic enzymes was totally different from that of the E. coli DERA. The areas of the subunit-subunit interface in the dimer of the hyperthermophilic enzymes are much larger than that of the E. coli enzyme. This promotes the formation of the unique dimeric structure and strengthens the hydrophobic intersubunit interactions. These structural features are considered responsible for the extremely high stability of the hyperthermophilic DERAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号