首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
ATP-dependent chromatin remodeling enzymes antagonize the inhibitory effects of chromatin. We compare six different remodeling complexes: ySWI/SNF, yRSC, hSWI/SNF, xMi-2, dCHRAC, and dNURF. We find that each complex uses similar amounts of ATP to remodel nucleosomal arrays at nearly identical rates. We also perform assays with arrays reconstituted with hyperacetylated or trypsinized histones and isolated histone (H3/H4)(2) tetramers. The results define three groups of the ATP-dependent family of remodeling enzymes. In addition we investigate the ability of an acidic activator to recruit remodeling complexes to nucleosomal arrays. We propose that ATP-dependent chromatin remodeling enzymes share a common reaction mechanism and that a key distinction between complexes is in their mode of regulation or recruitment.  相似文献   

7.
Previous studies have identified sin mutations that alleviate the requirement for the yeast SWI/SNF chromatin remodelling complex, which include point changes in the yeast genes encoding core histones. Here we characterise the biochemical properties of nucleosomes bearing these mutations. We find that sin mutant nucleosomes have a high inherent thermal mobility. As the SWI/SNF complex can alter nucleosome positioning, the higher mobility of sin mutant nucleosomes provides a means by which sin mutations may substitute for SWI/SNF function. The location of sin mutations also provides a new opportunity for insights into the mechanism for nucleosome mobilisation. We find that both mutations altering histone DNA contacts at the nucleosome dyad and mutations in the dimer-tetramer interface influence nucleosome mobility. Furthermore, incorporation of H2A.Z into nucleosomes, which also alters dimer-tetramer interactions, affects nucleosome mobility. Thus, variation of histone sequence or subtype provides a means by which eukaryotes may regulate access to chromatin through alterations to nucleosome mobility.  相似文献   

8.
9.
10.
11.
Stabilization of chromatin structure by PRC1, a Polycomb complex.   总被引:44,自引:0,他引:44  
The Polycomb group (PcG) genes are required for maintenance of homeotic gene repression during development. Mutations in these genes can be suppressed by mutations in genes of the SWI/SNF family. We have purified a complex, termed PRC1 (Polycomb repressive complex 1), that contains the products of the PcG genes Polycomb, Posterior sex combs, polyhomeotic, Sex combs on midleg, and several other proteins. Preincubation of PRC1 with nucleosomal arrays blocked the ability of these arrays to be remodeled by SWI/SNF. Addition of PRC1 to arrays at the same time as SWI/SNF did not block remodeling. Thus, PRC1 and SWI/SNF might compete with each other for the nucleosomal template. Several different types of repressive complexes, including deacetylases, interact with histone tails. In contrast, PRC1 was active on nucleosomal arrays formed with tailless histones.  相似文献   

12.
13.
14.
15.
Regulation of gene expression requires dynamic changes in chromatin, but the nature of these changes is not well understood. Here, we show that progesterone treatment of cultured cells leads to recruitment of progesterone receptor (PR) and SWI/SNF-related complexes to Mouse Mammary Tumor Virus (MMTV) promoter, accompanied by displacement of histones H2A and H2B from the nucleosome containing the receptor binding sites, but not from adjacent nucleosomes. PR recruits SWI/SNF to MMTV nucleosomes in vitro and facilitates synergistic binding of receptors and nuclear factor 1 to the promoter. In nucleosomes assembled on MMTV or mouse rDNA promoter sequences, SWI/SNF catalyzes ATP-dependent sliding of the histone octamer followed only on the MMTV promoter by displacement of histones H2A and H2B. In MMTV nucleosome arrays, SWI/SNF displaces H2A and H2B from nucleosome B and not from the adjacent nucleosome. Thus, the outcome of nucleosome remodeling by SWI/SNF depends on DNA sequence.  相似文献   

16.
17.
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors.  相似文献   

18.
19.
20.
The BRAHMA (BRM) gene encodes the SNF2-type ATPase of the putative Arabidopsis thaliana SWI/SNF chromatin remodelling complex. This family of ATPases is characterized by the presence of a conserved catalytic domain and an arrangement of auxiliary domains, whose functions in the remodelling activity remains unclear. Here, we characterize, at the molecular and functional level, the carboxy-terminal part of Arabidopsis BRM. We have found three DNA-binding regions that bind various free DNA and nucleosomal probes with different specificity. One of these regions contains an AT-hook motif. The carboxy terminus also contains a bromodomain able to bind histones H3 and H4. We propose that this array of domains constitute a nucleosome interaction module that helps BRM to interact with its substrate. We also characterize an Arabidopsis mutant that expresses a BRM protein lacking the last 454 amino acid residues (BRM-DeltaC), encompassing the bromodomain and two of the three DNA-binding activities identified. This mutant displays an intermediate phenotype between those of the wild-type and a null allele mutant, suggesting that the nucleosome interaction module is required for the normal function of BRM but it is not essential for the remodelling activity of BRM-containing SWI/SNF complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号