共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Iron-catalyzed reactions may be responsible for the biochemical and biological effects of asbestos 总被引:10,自引:0,他引:10
The most carcinogenic forms of asbestos contain iron to levels as high as 36% by weight and catalyze many of the same biochemical reactions that freshly prepared solutions of iron do, i.e. oxygen consumption, generation of reactive oxygen species, lipid peroxidation and DNA damage. The participation of iron from asbestos in these reactions has been demonstrated using the iron chelator desferrioxamine B which inhibits iron-catalyzed reactions. Iron appears to be redox active on the asbestos fiber, but chelation and subsequent iron mobilization from asbestos by a variety of chelators, e.g. citrate, EDTA or nitrilotriacetate, makes the iron more redox active resulting in greater oxygen consumption and production of oxygen radicals in the presence of reducing agents. Iron also appears to be important for some of the asbestos-dependent biological effects on tissues or cells in culture, such as phagocytosis, cytotoxicity, lipid peroxidation and DNA damage. Therefore, redox cycling of iron to generate oxygen radicals at the surface of the fiber and/or in solution, as mobilized, low molecular weight chelates, may be very important in eliciting some of the biological effects of asbestos in vivo. 相似文献
3.
Ciapaite J Bakker SJ Diamant M van Eikenhorst G Heine RJ Westerhoff HV Krab K 《The FEBS journal》2006,273(23):5288-5302
Inhibition of the mitochondrial adenine nucleotide translocator (ANT) by long-chain acyl-CoA esters has been proposed to contribute to cellular dysfunction in obesity and type 2 diabetes by increasing formation of reactive oxygen species and adenosine via effects on the coenzyme Q redox state, mitochondrial membrane potential (Deltapsi) and cytosolic ATP concentrations. We here show that 5 microm palmitoyl-CoA increases the ratio of reduced to oxidized coenzyme Q (QH(2)/Q) by 42 +/- 9%, Deltapsi by 13 +/- 1 mV (9%), and the intramitochondrial ATP/ADP ratio by 352 +/- 34%, and decreases the extramitochondrial ATP/ADP ratio by 63 +/- 4% in actively phosphorylating mitochondria. The latter reduction is expected to translate into a 24% higher extramitochondrial AMP concentration. Furthermore, palmitoyl-CoA induced concentration-dependent H(2)O(2) formation, which can only partly be explained by its effect on Deltapsi. Although all measured fluxes and intermediate concentrations were affected by palmitoyl-CoA, modular kinetic analysis revealed that this resulted mainly from inhibition of the ANT. Through Metabolic Control Analysis, we then determined to what extent the ANT controls the investigated mitochondrial properties. Under steady-state conditions, the ANT moderately controlled oxygen uptake (control coefficient C = 0.13) and phosphorylation (C = 0.14) flux. It controlled intramitochondrial (C = -0.70) and extramitochondrial ATP/ADP ratios (C = 0.23) more strongly, whereas the control exerted over the QH(2)/Q ratio (C = -0.04) and Deltapsi (C = -0.01) was small. Quantitative assessment of the effects of palmitoyl-CoA showed that the mitochondrial properties that were most strongly controlled by the ANT were affected the most. Our observations suggest that long-chain acyl-CoA esters may contribute to cellular dysfunction in obesity and type 2 diabetes through effects on cellular energy metabolism and production of reactive oxygen species. 相似文献
4.
Gackowski D Kruszewski M Jawien A Ciecierski M Olinski R 《Free radical biology & medicine》2001,31(4):542-547
There are numerous data suggesting that oxidative stress may be involved in the development of atherosclerosis. Therefore, in the present study we measured the amount of 8-hydroxy-2'-deoxyguanosine (8-OH-dG), one of the typical biomarkers of oxidative stress, in DNA isolated from lymphocytes of the patients and in the control group. Levels of antioxidant vitamins (A, C, and E) and intracellular labile iron pool (LIP), which can influence oxidative stress, were also determined. Blood samples were obtained from a control group of 55 healthy persons and from 43 atherosclerotic patients. 8-OH-dG and the vitamin levels were measured by high-performance liquid chromatography. Labile iron pool in lymphocytes was analyzed by fluorescent assay. The levels of 8-OH-dG and LIP were significantly higher and vitamin C concentration was significantly lower in the patient group than in the control group. The rest of the analyzed parameters do not significantly differ between the groups. A lower concentration of vitamin C and higher levels of labile iron pool in a group of atherosclerotic patients when compared with the control group may lead to oxidative stress, which is manifested by a higher level of 8-OH-dG in blood lymphocytes. All these factors may create an environment that promotes the development of atherosclerosis. 相似文献
5.
Uncoupling proteins (UCPs) mediate fatty acid-induced proton cycling in mitochondria, which is stimulated by superoxide and inhibited by GDP. Fatty acid anions can also be transported by adenine nucleotide translocase (ANT), thus resulting in the uncoupling of oxidative phosphorylation. In the present work, an attempt was made to distinguish between the protonophoric activity of UCP3 and that of ANT using inhibition analysis. This study was carried out using mitochondria from skeletal muscles of hibernating Yakut ground squirrel, which have a significant level of UCP3 mRNA. We found that millimolar concentrations of GDP, which is considered to be a specific inhibitor of UCPs, slightly recoupled the mitochondrial respiration and restored the membrane potential. Addition of the specific ANT inhibitor CAT (carboxyatractylate), in micromolar concentration, prior to GDP prevented its recoupling effect. Moreover, GDP and ADP exhibited a competitive kinetic behavior with respect to ANT. In brown adipose tissue, CAT did not prevent the UCP1-iduced increase in chloride permeability and the inhibitory effect of GDP, thus confirming the inability of CAT to affect UCP1. These results allow us to conclude that the recoupling effect of purine nucleotides on skeletal muscle mitochondria of hibernating ground squirrels can be explained by interaction of the nucleotides with ANT, whereas UCP3 is not involved in the process. 相似文献
6.
7.
Shabalina IG Petrovic N Kramarova TV Hoeks J Cannon B Nedergaard J 《The Journal of biological chemistry》2006,281(20):13882-13893
Uncoupling proteins have been ascribed a role in defense against oxidative stress, particularly by being activated by products of oxidative stress such as 4-hydroxy-2-nonenal (HNE). We have investigated here the ability of HNE to activate UCP1. Using brown fat mitochondria from UCP1+/+ and UCP1-/- mice to allow for identification of UCP1-dependent effects, we found that HNE could neither (re)activate purine nucleotide-inhibited UCP1, nor induce additional activation of innately active UCP1. The aldehyde nonenal had a (re)activating effect only if converted to the corresponding fatty acid by aldehyde dehydrogenase; the presence of a carboxyl group was thus an absolute requirement for (re)activation. The UCP1-dependent proton leak was not increased by HNE but HNE changed basal proton leak characteristics in a UCP1-independent manner. In agreement with the in vitro results, we found, as compared with UCP1+/+ mice, no increase in HNE/protein adducts in brown fat mitochondria isolated from UCP1-/- mice, irrespective of whether they were adapted to thermoneutral temperature (30 degrees C) or to the cold (4 degrees C). The absence of oxidative damage in UCP1-/- mitochondria was not due to enhanced activity of antioxidant enzymes. Thus, HNE did not affect UCP1 activity, and UCP1 would appear not to be physiologically involved in defense against oxidative stress. Additionally, it was concluded that at least in brown adipose tissue, conditions of high mitochondrial membrane potential, high oxygen tension, and high substrate supply do not necessarily lead to increased oxidative damage. 相似文献
8.
Prostaglandin E (PGE) stimulates resorption in bone. Since osteoblast-like osteosarcoma cells secrete PGE2, the possibility that osteoclasts were the major target for PGE was considered. To study this question, it was first established that in isolated bone cells enriched for either osteoclastic (OC) or osteoblastic (OB) characteristics, PGE1 can induce biochemical effects similar to those seen with bovine parathyroid hormone 1-84 (PTH), another potent stimulator of bone resorption. These changes include increased cAMP and hyaluronate synthesis in OC cells, and increased cAMP but decreased citrate decarboxylation in OB cells. By following these markers, it is demonstrated that PGE1 can activate OC cells at doses as low as 1 nM, whereas OB cells require 250 nM. Bone cell responses to various doses of PTH and PGE1 were also compared. In OC cells the lowest effective dose of PGE1 and PTH was similar (1 nM), but increasing response to PGE1 was seen up to 1000 nM in contrast to PTH response which peaked at 20 nM. In addition, the magnitude of PGE1-induced OC cell hyaluronate was two to four times greater than that of PTH at all doses tested. In OB cells, PTH induced significant decreases in citrate decarboxylation at 0.1 nM, compared to 250 nM for PGE1. Half-maximal inhibition of citrate decarboxylation (19% of control) by PTH occurred at 0.5 nM, whereas 500 nM of PGE1 was required for an equivalent effect. Thus, (i) OC cells responded to PGE1 doses that were approximately 200 times lower than the minimum required by OB cells, and (ii) OB cells responded to 100 times lower doses of PTH than PGE1. 相似文献
9.
Oviductal sperm reservoirs have been found in cattle, mice, hamsters, pigs, and horses. In cattle (Bos taurus), the reservoir is evidently formed when sperm bind to fucosylated ligands resembling Le(a) trisaccharide on the surface of oviductal epithelium. The aim of this study was to characterize the fucose-binding protein on bull sperm. Fresh ejaculated sperm were extracted with 0.5 M KCl in Hepes-balanced salts. Extracts were subjected to affinity chromatography using immobilized Le(a) trisaccharide (alpha-L-Fuc[1,4]-beta-D-Gal[1,3]-D-GlcNAc). Two-dimensional PAGE of the affinity chromatography eluates revealed a prominent protein of approximately 16.5 kDa and a pI of 5.8. This protein inhibited binding of sperm to oviductal explants. A similar analysis of proteins extracted from capacitated sperm (which do not bind to oviductal epithelium) showed a reduction in the amount of the 16.5-kDa protein. When examined by epifluorescence microscopy, live uncapacitated sperm labeled over the acrosome with a fucose-BSA-fluorescein isothiocyanate (FITC) conjugate, while capacitated sperm did not. When capacitated sperm were treated with 16.5-kDa protein, labeling with fucose-BSA-FITC was partially restored. The comparative ease with which the protein was removed from sperm and its apparent reassociation with sperm suggested that it could be a peripheral protein derived from epididymal or accessory gland fluids. Blots of SDS-PAGE gels of seminal plasma proteins revealed the presence of a Le(a)-binding protein with an apparent mass of 16.5 kDA: Amino acid sequencing of two tryptic fragments of the protein purified from sperm extracts identified it as PDC-109 (BSP-A1/A2), a product of the seminal vesicles. 相似文献
10.
11.
Kucejova B Li L Wang X Giannattasio S Chen XJ 《Molecular genetics and genomics : MGG》2008,280(1):25-39
In Saccharomyces cerevisiae, SAL1 encodes a Ca2+ -binding mitochondrial carrier. Disruption of SAL1 is synthetically lethal with the loss of a specific function associated with the Aac2 isoform of the ATP/ADP translocase. This novel activity of Aac2 is defined as the V function (for Viability of aac2 sal1 double mutant), which is independent of the ATP/ADP exchange activity required for respiratory growth (the R function). We found that co-inactivation of SAL1 and AAC2 leads to defects in mitochondrial translation and mitochondrial DNA (mtDNA) maintenance. Additionally, sal1Delta exacerbates the respiratory deficiency and mtDNA instability of ggc1Delta, shy1Delta and mtg1Delta mutants, which are known to reduce mitochondrial protein synthesis or protein complex assembly. The V function is complemented by the human Short Ca2+ -binding Mitochondrial Carrier (SCaMC) protein, SCaMC-2, a putative ATP-Mg/Pi exchangers on the inner membrane. However, mitochondria lacking both Sal1p and Aac2p are not depleted of adenine nucleotides. The Aac2R252I and Aac2R253I variants mutated at the R252-254 triplet critical for nucleotide transport retain the V function. Likewise, Sal1p remains functionally active when the R479I and R481I mutations were introduced into the structurally equivalent R479-T480-R481 motif. Finally, we found that the naturally occurring V-R+ Aac1 isoform of adenine nucleotide translocase partially gains the V function at the expense of the R function by introducing the mutations P89L and A96 V. Thus, our data support the view that the V function is independent of adenine nucleotide transport associated with Sal1p and Aac2p and this evolutionarily conserved activity affects multiple processes in mitochondria. 相似文献
12.
13.
14.
Previous reports that ethacrynic acid and furosemide diminish mitochondrial P : O ratios and reduce (Na+ + K+)-ATPase activity suggested that these diuretics may inhibit mitochondrial phosphorylation reactions. This possibility was initially studied by determining the effects of ethacrynic acid and furosemide on [32P]ATP exchange activity of rat kidney mitochondria. Concentrations of both drugs at 10−4 M or greater, significantly inhibited [32P]ATP exchange. To investigate the mechanism of this inhibition, the effects of ethacrynic acid and furosemide on the ATPase activity of intact mitochondria and sonicated submitochondrial particles were determined. Both diuretics inhibited ATPase activity of intact mitochondria at 10−4 M. In contrast, ATPase of submitochondrial particles was significantly less susceptible to inhibition by the diuretics. These results suggested that ethacrynic acid and furosemide inhibit adenine nucleotide transport across the mitochondrial membrane. This was directly tested by determining the effects of the diuretics on the mitochondrial adenine nucleotide translocase. At 5 · 10−4 M, both ethacrynic acid and furosemide significantly inhibited adenine nucleotide transport. These findings suggest that ethacrynic acid and furosemide may diminish renal tubular solute reabsorption by direct inhibition of adenine nucleotide transport across the mitochondrial inner membrane. 相似文献
15.
Laliberte RE Perregaux DG Hoth LR Rosner PJ Jordan CK Peese KM Eggler JF Dombroski MA Geoghegan KF Gabel CA 《The Journal of biological chemistry》2003,278(19):16567-16578
Stimulus-induced posttranslational processing of human monocyte interleukin-1beta (IL-1beta) is accompanied by major changes to the intracellular ionic environment, activation of caspase-1, and cell death. Certain diarylsulfonylureas inhibit this response, and are designated cytokine release inhibitory drugs (CRIDs). CRIDs arrest activated monocytes so that caspase-1 remains inactive and plasma membrane latency is preserved. Affinity labeling with [(14)C]CRIDs and affinity chromatography on immobilized CRID were used in seeking potential protein targets of their action. Following treatment of intact human monocytes with an epoxide-bearing [(14)C]CRID, glutathione S-transferase (GST) Omega 1-1 was identified as a preferred target. Moreover, labeling of this polypeptide correlated with irreversible inhibition of ATP-induced IL-1beta posttranslational processing. When extracts of human monocytic cells were chromatographed on a CRID affinity column, GST Omega 1-1 bound selectively to the affinity matrix and was eluted by soluble CRID. Recombinant GST Omega 1-1 readily incorporated [(14)C]CRID epoxides, but labeling was negated by co-incubation with S-substituted glutathiones or by mutagenesis of the catalytic center Cys(32) to alanine. Peptide mapping by high performance liquid chromatography-mass spectrometry also demonstrated that Cys(32) was the site of modification. Although S-alkylglutathiones did not arrest ATP-induced IL-1beta posttranslational processing or inhibit [(14)C]CRID incorporation into cell-associated GST Omega 1-1, a glutathione-CRID adduct effectively demonstrated these attributes. Therefore, the ability of CRIDs to arrest stimulus-induced IL-1beta posttranslational processing may be attributable to their interaction with GST Omega 1-1. 相似文献
16.
Previous reports that ethacrynic acid and furosemide diminish mitochondrial P : O ratios and reduce (Na+ + K+)-ATPase activity suggested that these diuretics may inhibit mitochondrial phosphorylation reactions. This possibility was initially studied by determining the effects of ethacrynic acid and furosemide on [32P]ATP exchange activity of rat kidney mitochondria. Concentrations of both drugs at 10(-4) M or greater, significantly inhibited [32P]ATP exchange. To investigate the mechanism of this inhibition, the effects of ethacrynic acid and furosemide on the ATPase activity of intract mitochondria and sonicated submitochondrial particles were determined. Both diuretics inhibited ATPase activity of intact mitochondria at 10(-4) M. In contrast, ATPase of submitochondrial particles was significantly less susceptible to inhibition by the diuretics. These results suggested that ethacrynic acid anf furosemide inhibit adenine nucleotide transport across the mitochondrial membrane. This was directly tested by determining the effects of the diretics on the mitochondrial adenine nucleotide translocase. At 5-10(-4) M, both ethacrynic acid and furosemide significantly inhibited adenine nucleotide transport. These findings suggest that ethacrynic acid and furosemide may diminish renal tubular solute reabsorption by direct inhibition of adenine nucleotide transport across the mitochondrial inner membrane. 相似文献
17.
18.
J. L. Williams S. Dunner A. Valentini R. Mazza V. Amarger M. L. Checa A. Crisà N. Razzaq D. Delourme F. Grandjean C. Marchitelli D. García R. Pérez Gomez R. Negrini P. Ajmone Marsan H. Levéziel 《Animal genetics》2009,40(4):486-491
A large number of putative single nucleotide polymorphisms (SNPs) have been identified from the bovine genome-sequencing project. However, few of these have been validated and many will turn out to be sequencing artefacts or have low minor allele frequencies. In addition, there is little information available on SNPs within coding regions, which are likely to be responsible for phenotypic variation. Therefore, additional SNP discovery is necessary to identify and validate polymorphisms both in specific genes and genome-wide. Sequence-tagged sites within 286 genes were resequenced from a panel of animals representing a wide range of European cattle breeds. For 80 genes, no polymorphisms were identified, and 672 putative SNPs were identified within 206 genes. Fifteen European cattle breeds (436 individuals plus available parents) were genotyped with these putative SNPs, and 389 SNPs were confirmed to have minor allele frequencies above 10%. The genes containing SNPs were localized on chromosomes by radiation hybrid mapping and on the bovine genome sequence by Blast . Flanking microsatellite loci were identified, to facilitate the alignment of the genes containing the SNPs in relation to mapped quantitative trait loci. Of the 672 putative SNPs discovered in this work, only 11 were found among the validated SNPs and 100 were found among the approximately 2.3 million putative SNPs currently in dbSNP. The genes studied in this work could be considered as candidates for traits associated with beef production and the SNPs reported will help to assess the role of the genes in the genetic control of muscle development and meat quality. The allele frequency data presented allows the general utility of the SNPs to be assessed. 相似文献
19.
It is widely accepted that chitin is present in nematodes. However, its precise role in embryogenesis is unclear and it is unknown if chitin is necessary in other nematode tissues. Here, we determined the roles of chitin and the two predicted chitin synthase genes in Caenorhabditis elegans by chitin localization and gene disruption. Using a novel probe, we detected chitin in the eggshell and discovered elaborate chitin localization patterns in the pharyngeal lumen walls. Chitin deposition in these two sites is likely regulated by the activities of chs-1 (T25G3.2) and chs-2 (F48A11.1), respectively. Reducing chs-1 gene activity by RNAi led to eggs that were fragile and permeable to small molecules, and in the most severe case, absence of embryonic cell division. Complete loss of function in a chs-1 deletion resulted in embryos that lacked chitin in their eggshells and failed to divide. These results showed that eggshell chitin provides both mechanical support and chemical impermeability essential to developing embryos. Knocking down chs-2 by RNAi caused a defect in the pharynx and led to L1 larval arrest, indicating that chitin is involved in the development and function of the pharynx. 相似文献
20.
Konràd C Kiss G Töröcsik B Lábár JL Gerencser AA Mándi M Adam-Vizi V Chinopoulos C 《The FEBS journal》2011,278(5):822-836
Mitochondria isolated from embryos of the crustacean Artemia franciscana lack the Ca(2+)-induced permeability transition pore. Although the composition of the pore described in mammalian mitochondria is unknown, the impacts of several effectors of the adenine nucleotide translocase (ANT) on pore opening are firmly established. Notably, ADP, ATP and bongkrekate delay, whereas carboxyatractyloside hastens, Ca(2+)-induced pore opening. Here, we report that adenine nucleotides decreased, whereas carboxyatractyloside increased, Ca(2+) uptake capacity in mitochondria isolated from Artemia embryos. Bongkrekate had no effect on either Ca(2+) uptake or ADP-ATP exchange rate. Transmission electron microscopy imaging of Ca(2+)-loaded Artemia mitochondria showed needle-like formations of electron-dense material in the absence of adenine nucleotides, and dot-like formations in the presence of adenine nucleotides or Mg(2+). Energy-filtered transmission electron microscopy showed the material to be rich in calcium and phosphorus. Sequencing of the Artemia mRNA coding for ANT revealed that it transcribes a protein with a stretch of amino acids in the 198-225 region with 48-56% similarity to those from other species, including the deletion of three amino acids in positions 211, 212 and 219. Mitochondria isolated from the liver of Xenopus laevis, in which the ANT shows similarity to that in Artemia except for the 198-225 amino acid region, demonstrated a Ca(2+)-induced bongkrekate-sensitive permeability transition pore, allowing the suggestion that this region of ANT may contain the binding site for bongkrekate. 相似文献